862 resultados para Data processing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

具有自主的全局定位能力是自主式移动机器人传感器系统的一项重要功能 .为了实现这个目的 ,国内外均在不断地研究发展各种定位传感器系统 .这里介绍了一种采用光学原理的全方位位置传感器系统 .该传感器系统由主动式路标、视觉传感器、图象采集与数据处理系统组成 .其视觉传感器和数据处理系统可安装在移动机器人上 ,然后可通过观测路标和视角定位的方法 ,计算出机器人在世界坐标系中的位置和方向 .实验证明 ,该系统可以实现机器人的在线定位 ,其采样速率和精度能够满足实用要求 .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文介绍了一个基于 PSD 的机器人动态位置测量系统,描述了系统的构成,并对该系统中的标定方法,数据处理方法和为提高系统的性能所采取的硬件措施进行探讨,本系统通过长期考机和初步应用,表明了它具有良好的可靠性和有效性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文介绍用光学阵列传感器的机器人物体分类系统。传感器直接安装在机器人的两个手指上。被抓物体的阴影通过光导纤维传到安放在“安全区”的光敏元件上。计算机识别物体的轮廓后命令机器人抓握物体,并把它运送到指定的地点从而达到物体分类的目的。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文主要介绍用于图象数据处理的 CCD-微机系统。该系统使用电荷耦合器件(CCD)作为传感器,并与微型计算机连接,进行图象数据的采集和处理。系统还包括有光学系统、CCD 驱动控制线路、计算机 I/O 接口和应用软件。数据采集程序用汇编语言编写,数据处理和打印程序用 BASIC 语言编写,整个软件用BASIC 语言编写的程序管理。应用该系统曾对静止和运动物体尺寸进行过非接触测量,重复性很好。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在研究快速傅里叶变换(FFT)算法的基础上,根据FPGA性能高、灵活性强、速度快的特点,提出了高效的基4-FFT处理器的实现方法。数据存储采用分块存储的方法,大大提高了存取速度。数据寻址采用新型的地址产生方法,可并行产生所需数据地址。同时,在蝶形单元的设计中很好的将并行运算技术和流水线技术相结合了起来,又进一步提高了运算速度。测试结果表明,时钟在50MHz时完成1024点FFT的时间为25.6μs,满足了应用实时性的要求。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the Oil field exploration and exploitation, the problem of supervention and enhaning combination gas recovery was faced.then proposing new and higher demands to precision of seismic data. On the basis of studying exploration status,resource potential,and quality of 3D seismic data to internal representative mature Oil field, taking shengli field ken71 zone as study object, this paper takes advantage of high-density 3D seismic technique to solving the complex geologic problem in exploration and development of mature region, deep into researching the acquisition, processing of high-density 3D seismic data. This disseration study the function of routine 3D seismic, high-density 3D seismic, 3D VSP seismic,and multi-wave multi-component seismic to solving the geologic problem in exploration and development of mature region,particular introduce the advantage and shortage of high-density 3D seismic exploration, put forward the integrated study method of giving priority to high-density 3D seismic and combining other seismic data in enhancing exploration accuracy of mature region. On the basis of detailedly studying acquisition method of high-density 3D seismic and 3D VSP seismic,aming at developing physical simulation and numeical simulation to designing and optimizing observation system. Optimizing “four combination” whole acquisition method of acquisition of well with ground seimic and “three synchron”technique, realizing acquisition of combining P-wave with S-wave, acquisition of combining digit geophone with simulation geophone, acquisition of 3D VSP seismic with ground seimic, acquisition of combining interborehole seismic,implementing synchron acceptance of aboveground equipment and downhole instrument, common use and synchron acceptance of 3D VSP and ground shots, synchron acquisition of high-density P-wave and high-density multi-wave, achieve high quality magnanimity seismic data. On the basis of detailedly analysising the simulation geophone data of high-density acquisition ,adopting pertinency processing technique to protecting amplitude,studying the justice matching of S/N and resolution to improving resolution of seismic profile ,using poststack series connection migration,prestack time migration and prestack depth migration to putting up high precision imaging,gained reliable high resolution data.At the same time carrying along high accuracy exploration to high-density digit geophone data, obtaining good improve in its resolution, fidelity, break point clear degree, interbed information, formation characteristics and so on.Comparing processing results ,we may see simulation geophone high-density acquisition and high precision imaging can enhancing resolution, high-density seismic basing on digit geophone can better solve subsurface geology problem. At the same time, fine processing converted wave of synchron acquisition and 3D VSP seismic data,acquiring good result. On the basis of high-density seismic data acquisition and high-density seismic data processing, carry through high precision structure interpretation and inversion, and preliminary interpretation analysis to 3D VSP seismic data and multi-wave multi-component seismic data. High precision interpretation indicates after high resolution processing ,structural diagram obtaining from high-density seismic data better accord with true geoligy situation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Static correction is one of the indispensable steps in the conventional onshore seismic data processing, particularly in the western part of China; it is theoretically and practically significant to resolve the issue of static correction. Conventional refraction static correction is put forward under the assumption that layered medium is horizontal and evenly distributed. The complicated nature of the near surface from western part of China is far from the assumption. Therefore, the essential way to resolve the static correction problem from the complex area is to develop a new theory. In this paper, a high-precision non-linear first arrival tomography is applied to solve the problem, it moved beyond the conventional refraction algorithm based on the layered medium and can be used to modeling the complex near surface. Some of the new and creative work done is as follows: One. In the process of first arrival tomographic image modeling, a fast high-order step algorithm is used to calculate the travel time for first arrival and ray path and various factors concerning the fast step ray tracing algorithm is analyzed. Then the second-order and third-order differential format is applied to the step algorithm which greatly increased the calculation precision of the ray tracing and there is no constraint to the velocity distribution from the complex areas. This method has very strong adaptability and it can meet the needs of great velocity variation from the complicated areas. Based on the numerical calculation, a fast high-order step is a fast, non-conditional and stable high-precision tomographic modeling algorithm. Two, in the tomographic inversion, due to the uneven fold coverage and insufficient information, the inversion result is unstable and less reliable. In the paper, wavelet transform is applied to the tomographic inversion which has achieved a good result. Based on the result of the inversion from the real data, wavelet tomographic inversion has increased the reliability and stability of the inversion. Three. Apply the constrained high-precision wavelet tomographic image to the static correction processing from the complex area. During tomographic imaging, by using uphole survey, refraction shooting or other weathering layer method, weathering layer can be identified before the image. Because the group interval for the shot first arrival is relatively big, there is a lack of precision for the near surface inversion. In this paper, an inversion method of the layer constraint and well constraint is put forward, which can be used to compensate the shallow velocity of the inversion for the shot first arrival and increase the precision of the tomographic inversion. Key words: Tomography ,Fast marching method,Wavelet transform, Static corrections, First break

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a series researches are conducted on fracture reservoir prediction technology in general,and it especially focus on some difficult points. The technological series which integrated amplitude preserved data processing、interpretation and its comprehensive application research as a whole were developed and this new method can be applied to the other similar oilfield exploration and development. The contents and results in this paper are listed as follows: 1. An overview was given on the status and development of fracture reservoir estimation technique, compare and analyze those geophysical prediction methods. This will be very helpful to the similar reservoir researches. 2. Analyze and conclude the characters of geologies and well logging response of burial hills fracture reservoir, those conclusions are used to steer the geophysical research and get satisfying results. 3. Forward modeling anisotropy seismic response of fracture reservoir. Quantitatively describe the azimuthal amplitude variation. Amplitude ellipse at each incidence angle is used to identify the fracture orientation. 4. Numerical simulation of structure stress based on finite difference method is carried out. Quantitatively describe and analyze the direction and intensity of fracture. 5. Conventional attributes extraction of amplitude preserved seismic data、attributes with different azimuthal angle and different offset are used to determine the relationship between the results and fracture distribution. 6. With spectrum decomposition method based on wavelet transform, the author disclose the reservoir distribution in space. It is a powerful tool to display its anisotropy. 7. Integrated seismic wave impendence、elastic impendence、spectrum decomposition、attribute extraction、fracture analysis result as a whole to identify and evaluate the fracture reservoir. An optimum workflow is constructed. It is used to practical oil&gas production and good results are obtained. This can indicate the wide foreground of this technique series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the paper through extensive study and design, the technical plan for establishing the exploration database center is made to combine imported and self developed techniques. By research and repeated experiment a modern database center has been set up with its hardware and network having advanced performance, its system well configured, its data store and management complete, and its data support being fast and direct. Through study on the theory, method and model of decision an exploration decision assistant schema is designed with one decision plan of well location decision support system being evaluated and put into action. 1. Study on the establishment of Shengli exploration database center Research is made on the hardware configuration of the database center including its workstations and all connected hardware and system. The hardware of the database center is formed by connecting workstations, microcomputer workstations, disk arrays, and those equipments used for seismic processing and interpretation. Research on the data store and management includes the analysis of the contents to be managed, data flow, data standard, data QC, data backup and restore policy, optimization of database system. A reasonable data management regulation and workflow is made and the scientific exploration data management system is created. Data load is done by working out a schedule firstly and at last 200 more projects of seismic surveys has been loaded amount to 25TB. 2. Exploration work support system and its application Seismic data processing system support has the following features, automatic extraction of seismic attributes, GIS navigation, data order, extraction of any sized data cube, pseudo huge capacity disk array, standard output exchange format etc. The prestack data can be accessed by the processing system or data can be transferred to other processing system through standard exchange format. For supporting seismic interpretation system the following features exist such as auto scan and store of interpretation result, internal data quality control etc. the interpretation system is connected directly with database center to get real time support of seismic data, formation data and well data. Comprehensive geological study support is done through intranet with the ability to query or display data graphically on the navigation system under some geological constraints. Production management support system is mainly used to collect, analyze and display production data with its core technology on the controlled data collection and creation of multiple standard forms. 3. exploration decision support system design By classification of workflow and data flow of all the exploration stages and study on decision theory and method, target of each decision step, decision model and requirement, three concept models has been formed for the Shengli exploration decision support system including the exploration distribution support system, the well location support system and production management support system. the well location decision support system has passed evaluation and been put into action. 4. Technical advance Hardware and software match with high performance for the database center. By combining parallel computer system, database server, huge capacity ATL, disk array, network and firewall together to create the first exploration database center in China with reasonable configuration, high performance and able to manage the whole data sets of exploration. Huge exploration data management technology is formed where exploration data standards and management regulations are made to guarantee data quality, safety and security. Multifunction query and support system for comprehensive exploration information support. It includes support system for geological study, seismic processing and interpretation and production management. In the system a lot of new database and computer technology have been used to provide real time information support for exploration work. Finally is the design of Shengli exploration decision support system. 5. Application and benefit Data storage has reached the amount of 25TB with thousand of users in Shengli oil field to access data to improve work efficiency multiple times. The technology has also been applied by many other units of SINOPEC. Its application of providing data to a project named Exploration achievements and Evaluation of Favorable Targets in Hekou Area shortened the data preparation period from 30 days to 2 days, enriching data abundance 15 percent and getting information support from the database center perfectly. Its application to provide former processed result for a project named Pre-stack depth migration in Guxi fracture zone reduced the amount of repeated process and shortened work period of one month and improved processing precision and quality, saving capital investment of data processing of 30 million yuan. It application by providing project database automatically in project named Geological and seismic study of southern slope zone of Dongying Sag shortened data preparation time so that researchers have more time to do research, thus to improve interpretation precision and quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, because of high petroleum consumption of our country, society steady development and difficulty increase in new resources exploration, deep exploitation of the existing oilfield is needed. More delicate reservoir imaging and description, such as thin layer identification, interlayer exploitation monitoring, subtle structure imaging, reservoir anisotropy recognition, can provide more detail evidence for new development adjustment scheme and enhanced oil recovery. Now, the people have already realized the 3D VSP technique more effective than the general methods in solving these aspects. But VSP technique especially 3D VSP develop slowly due to some reasons. Carrying out the research of VSP technique, it will be very useful to the EOR service. 3D VSP techniques include acquisition、data processing and interpretation. In this paper, the author carried out some researches around acquisition and processing. The key point of acquisition is the survey design, it is critical to the quality of the data and it will influence the reservoir recognition as follows. The author did detailed researches on the layout pattern of shot point and geophone. Some attributes relate to survey design such as reflectivity, incidence angle, observation area, reflection points distribution, fold, minimum well source distance, azimuth angle and so on are studied seriously. In this geometry design of 3D-VSP exploration in deviated wells, the main problems to be solved are: determining the center position of shots distribution, the effect of shots missing on coverage areas and coverage times,locating the shots and receivers of multi-wells. Through simulating and analyzing, the above problems are discussed and some beneficial conclusions are drawn. These will provide valuable references to actual survey design. In data processing, researches emphasize on those relatively key techniques such as wavefield separation, VSP-CDP imaging, the author carried out deep researches around these two aspects. As a result, variant apparent slowness wavefield separation method developed in this article suit the underground variant velocity field and make wavefield separation well, it can overcome reflection bending shortage aroused by conventional imaging method. The attenuateion range of underground seismic wave is very important for amplitude compensation and oil/gas identification.In this paper, seismic wave attenuateion mechanism is studied by 3D-VSP simulateion and Q-inversion technique. By testing with seismic data, the method of VSP data attenuateion and relationship of attenuateion attribute variant with depth is researched. Also the software of survey design and data processing is developed, it fill the gap of VSP area in our country. The technique developed applied successfully in SZXX-A Oilfield、QKYY-B Oilfield、A area and B area. The good results show that this research is valuable, and it is meaningful to the VSP technique development and application of offshore oil industry and other areas in our country.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the development of oil and gas field exploration, it becomes harder to search new reserves. So a higher demand of seismic exploration comes up. Now 3C3D seismic exploration technology has been applied in petroleum exploration domains abroad. Comparing with the traditional P-wave exploration, the seismic attributes information which provided by 3C3D seismic exploration will increase quickly. And it can derive various combined parameters. The precision of information about lithology, porosity, fracture, oil-bearing properties, etc which estimated by above parameters was higher than that of pure P-wave exploration. These advantages mentioned above lead to fast development of 3C3D seismic technology recently. Therefore, how to apply the technology in petroleum exploration field in China, how to obtain high quality seismic data, and how to process and interpret real data, become frontier topics in geophysical field nowadays, which have important practical significance in research and application. In this paper, according to the propagation properties of P-wave and converted wave, a study of 3C3D acquisition parameters design method was completed. Main parameters included: trace interval, shot interval, maximum offset, bin size, the interval of receiving lines, the interval of shooting lines, migration aperture, maximum cross line distance, etc. Their determination principle was given. The type of 3C3D seismic exploration geometry was studied. By calculating bin attributes and analyzing parameters of geometry, some useful conclusions were drawn. With the method in this paper, real geometries for continental lithology stratum gas reservoir and fractured gas reservoir were studied and determined. In the static method of multi-wave, the near surface P-wave, S-wave parameter investigation method has been advanced, and this method has been applied for the patent successfully; the near surface P-wave, S-wave parameter investigation method and the converted refraction wave first arrival static techniques have been integrally used to improve the effectiveness of converted wave static. In the aspect of converted wave procession, the rotation of horizontal component data, the calculation of converted wave common conversion bin, the residual static of converted wave, the velocity analysis of the common conversion point (CCP), the Kirchhoff pre-stack time migration of converted wave techniques have been applied for setting up the various 3C3D seismic data processing flows based on different geologic targets, and the high quality P-wave, converted-wave profiles have been acquired in the actual data processing. In the aspect of P-wave and converted-wave comprehensive interpretation, the thoughts and methods of using zero-offset S-wave VSP data to calibrate horizon have been proposed; the method of using P-wave and S-wave amplitude ratio to predict the areas of oil and gas enrichment has been studied; the method of inversion using P-wave combined with S-wave has been studied; the various P-wave, S-wave parameters(velocity ratio, amplitude ratio, poisson ratio) have been used to predict the depth, physical properties, gas-bearing properties of reservoirs; the method of predicting the continental stratum lithology gas reservoir has been built. The above techniques have all been used in various 3D3C seismic exploration projects in China, and the better effects have been gotten. By using these techniques, the 3C3D seismic exploration level has been improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exploration study proves that East sea shelf basin embeds abundant hydrocarbon resources. However, the exploration knowledge of this area is very low. Many problems in exploration are encountered here. One of them is that the gas reservoir of this area, with rapid lateral variation, is deeply buried. Correlation of Impendence between sandstone, gas sand and shale is very poor. Another problem is that the S/N ratio of the seismic data is very low and multiples are relatively productive which seriously affect reservoir identification. Resolution of the seismic data reflected from 2500-3000 meter is rather low, which seriously affects the application of hydrocarbon direct identification (HDI) technology. This research established a fine geological & geophysical model based on drilling、well logging、geology&seismic data of East sea Lishui area. A Q value extraction method from seismic data is proposed. With this method, Q value inversion from VSP data and seismic data is performed to determine the subsurface absorption of this area. Then wave propagation and absorption rule are in control. Field acquisition design can be directed. And at the same time, with the optimization of source system, the performance of high resolution seismic acquisition layout system is enhanced. So the firm foundation is ensured for east sea gas reservoir exploration. For solving the multiple and amplitude preserving problems during the seismic data processing, wave equation pre-stack amplitude preservation migration and wave equation feedback iteratively multiple attenuation technologies are developed. Amplitude preservation migration technology can preserve the amplitude of imaging condition and wave-field extrapolation. Multiple removing technology is independent of seismic source wavelet and velocity model, which avoiding the weakness of Delft method. Aiming at the complicated formation condition of the gas reservoir in this area, with dissecting typical hydrocarbon reservoir, a series of pertinent advanced gas reservoir seismic identification technologies such as petrophysical properties analyzing and seismic modeling technology、pre-stack/post-stack joint elastic inversion, attribute extraction technology based on seismic non-stationary signal theory and formation absorption characteristic and so on are studied and developed. Integrated analysis of pre-stack/post-stack seismic data, reservoir information, rock physics and attribute information is performed. And finally, a suit of gas reservoir identification technology is built, according to the geological and geophysical characteristics of this area. With developed innovative technologies, practical application and intergrated interpretation appraisal researches are carried out in Lishui 36-1.The validity of these technologies is tested and verified. Also the hydrocarbon charging possibility and position of those three east sea gas exploration targets are clearly pointed out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Offshore seismic exploration is full of high investment and risk. And there are many problems, such as multiple. The technology of high resolution and high S/N ratio on marine seismic data processing is becoming an important project. In this paper, the technology of multi-scale decomposition on both prestack and poststack seismic data based on wavelet and Hilbert-Huang transform and the theory of phase deconvolution is proposed by analysis of marine seismic exploration, investigation and study of literatures, and integration of current mainstream and emerging technology. Related algorithms are studied. The Pyramid algorithm of decomposition and reconstruction had been given by the Mallat algorithm of discrete wavelet transform In this paper, it is introduced into seismic data processing, the validity is shown by test with field data. The main idea of Hilbert-Huang transform is the empirical mode decomposition with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions that admit well-behaved Hilbert transform. After the decomposition, a analytical signal is constructed by Hilbert transform, from which the instantaneous frequency and amplitude can be obtained. And then, Hilbert spectrum. This decomposition method is adaptive and highly efficient. Since the decomposition is based on the local characteristics of the time scale of data, it is applicable to nonlinear and non-stationary processes. The phenomenons of fitting overshoot and undershoot and end swings are analyzed in Hilbert-Huang transform. And these phenomenons are eliminated by effective method which is studied in the paper. The technology of multi-scale decomposition on both prestack and poststack seismic data can realize the amplitude preserved processing, enhance the seismic data resolution greatly, and overcome the problem that different frequency components can not restore amplitude properly uniformly in the conventional method. The method of phase deconvolution, which has overcome the minimum phase limitation in traditional deconvolution, approached the base fact well that the seismic wavelet is phase mixed in practical application. And a more reliable result will be given by this method. In the applied research, the high resolution relative amplitude preserved processing result has been obtained by careful analysis and research with the application of the methods mentioned above in seismic data processing in four different target areas of China Sea. Finally, a set of processing flow and method system was formed in the paper, which has been carried on in the application in the actual production process and has made the good progress and the huge economic benefit.