923 resultados para DIABETIC-NEPHROPATHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Nateglinide restores early-phase insulin secretion to feeding and reduces postprandial hyperglycaemia in type 2 diabetes. This study evaluated the effects of nateglinide on dipeptidyl peptidase-IV (DPP-IV) activity and glucose-dependent insulinotropic polypeptide (GIP) degradation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence supports a role for glycated insulin in the insulin-resistant state of type 2 diabetes. We measured 24-hour profiles of plasma glycated insulin, using a novel radioimmunoassay (RIA), to evaluate the effects of meal stimulation and intermittent fasting on circulating concentrations of plasma glycated insulin in type 2 diabetes. Patients (n = 6; hemoglobin A(1c) [HbA(1c)], 7.2% +/- 0.6%; fasting plasma glucose, 7.4 +/- 0.7 mmol/L; body mass index [BMI], 35.7 +/- 3.5 kg/m(2); age, 56.3 +/- 4.4 years) were admitted for 24 hours and received a standardized meal regimen. Half-hourly venous samples were taken for plasma glycated insulin, glucose, insulin, and C-peptide concentrations between 8 Am and midnight and 2-hourly overnight. The mean plasma glycated insulin concentration over 24 hours was 27.8 +/- 1.2 pmol/L with a mean ratio of insulin:glycated insulin of 11:1. Circulating glucose, insulin, C-peptide, and glycated insulin followed a basal and meal-related pattern with most prominent increments following breakfast, lunch, and evening meal, respectively. The mean concentrations of glycated insulin during the morning, afternoon, evening, and night-time periods were 24.4 +/- 2.5, 28.7 +/- 2.3, 31.1 +/- 2.1, and 26.2 +/- 1.5 pmol/L, respectively, giving significantly higher molar ratios of insulin:glycated insulin of 18.0:1, 14.2:1, and 12.7:1 compared with 7.01 at night (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully crossreacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19%., of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24-71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric inhibitory polypeptide (GIP) is produced within endocrine cells of the small intestine and released into the circulation upon nutrient ingestion. This study has quantified the levels of this insulinotropic peptide in the intestines of lean and diabetic obese ob/ob mice and estimated the proportion that is glycated. The total intestinal GIP concentration and content of the diabetic mice were significantly greater (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degreesC with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His7-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His7-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His7-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric inhibitory polypeptide (GIP) is an important insulin-releasing hormone of the enteroinsular axis which is rapidly inactivated by the exopeptidase dipeptidyl peptidase (DPP) IV. The present study has examined the ability of Tyr(1)-glucitol GIP to be protected from plasma degradation and to enhance insulin-releasing and antihyperglycaemic activity in 20- to 25-week-old obese diabetic ob/ob mice. Degradation of GIP by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% degraded). After 6 h, more than 61% of GIP was converted to GIP(3-42) whereas N-terminally modified Tyr(1)-glucitol GIP was resistant to degradation in plasma (>99% intact after 6 h). The formation of GIP(3-42) was almost completely abolished by inhibition of plasma DPP IV with diprotin A. Effects of GIP and Tyr(1)-glucitol GIP were examined in overnight-fasted obese mice following i.p. injection of either peptide (20 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Most prominent effects were observed in the former group where plasma glucose values at 60 min together with the area under the curve (AUC) for glucose were significantly lower following GIP (AUC, 874 +/- 72 mmol/l.min; P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is the most widespread complication of diabetes mellitus and a major cause of blindness in the working population of developed countries. The clinicopathology of the diabetic retina has been extensively studied, although the relative contribution of the various biochemical and molecular sequelae of hyperglycemia remains ill defined. Many neural and microvascular abnormalities occur in the retina of short-term diabetic animals but it remains uncertain how closely these acute changes relate to chronic human disease. It is important to determine the relationship between alterations observed within the first weeks or months in short-term aminal models, and human disease, where clinically manifest retinopathy occurs only after durations of diabetes measured in years. This review is focused on the retinal microvasculature, although it should be appreciated that pathological changes in this system often occur in parallel with abnormalities in the neural parenchyma that may be derivative or even causal. Nevertheless, it is useful to reevaluate the microvascular lesions that are manifest in the retina during diabetes in humans and long-term animal models, since in addition to providing useful clues to the pathogenic basis of DR as a disease entity, it is in the deterrence of such changes that the efficacy of any novel treatment regimes will be measured. In particular, an emphasis will be placed on the relatively unappreciated role of arteriolar dysfunction in the clinical manifestations and pathology of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of advanced glycation end products (AGEs) is a key pathophysiological event with links to a range of important human diseases. It is now clear that AGEs may act as mediators, not only of diabetic complications(1 2) but also of widespread age related pathology such as Alzheimer's disease,(3) decreased skin elasticity,(4) (5) male erectile dysfunction,(6) (7) pulmonary fibrosis,(8) and atherosclerosis.(9 10) Since many cells and tissues of the eye are profoundly influenced by both diabetes and ageing, it is fitting that advanced glycation is now receiving considerable attention as a possible modulator in important visual disorders. An increasing number of reports confirm widespread AGE accumulation at sites of known ocular pathology and demonstrate how these products mediate crosslinking of long lived molecules in the eye. Such studies also underscore the putative pathophysiological role of advanced glycation in ocular cell dysfunction in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Although microaneurysms are a clinicopathological hallmark of diabetic retinopathy, there have been few ultrastructural studies of these important lesions. As a result, knowledge of the mechanisms involved in the pathogenesis of microaneurysms remains fragmentary. This study provides histological and ultrastructural evidence of various stages in microaneurysm formation within the retinal vasculature. METHODS: The eyes of three type II diabetic patients, obtained within 24 hours of death, were studied by the trypsin digest technique. Eyes from two further type II diabetics were fixed in 2.5% glutaraldehyde within 12 hours of death and processed for electron microscopy. RESULTS: In the trypsin digest preparations, small saccular and fusiform microaneurysms were observed in the peripheral retinal. In the central retina, the microaneurysms ranged in morphology from thin walled, cellular forms to dense, acellular, hyalinised forms. Ultrastructurally, four distinct groups of microaneurysm were observed. Type I showed an extensive accumulation of polymorphonuclear cells into the lumen. The endothelium remained intact, although pericytes were invariably absent. Type II microaneurysms were typified by large numbers of red blood cells (RBCs) in the lumen. Endothelial cells and pericytes were completely absent. The type III microaneurysm was also non-perfused and contained aggregates of irregularly shaped RBC profiles and RBC breakdown products. Recanalisation by new vessels into the occluded lumen was observed in one microaneurysm. Type IV microaneurysms were almost or completely sclerosed, with extensive fibrosis and lipid infiltration into the lumen and basement membrane wall. CONCLUSION: This investigation describes several distinctive stages in the formation of microaneurysms during diabetic retinopathy. With reference to the pathogenesis of retinal microaneurysms, the interaction of various cell types is discussed and the significance of vascular cell death and localised hypertensive events highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.