993 resultados para DENSITY-STRATIFIED FLUID
Resumo:
Background and aims: Hip fracture is a devastating event in terms of outcome in the elderly, and the best predictor of hip fracture risk is hip bone density, usually measured by dual X-ray absorptiometry (DXA). However, bone density can also be ascertained from computerized tomography (CT) scans, and mid-thigh scans are frequently employed to assess the muscle and fat composition of the lower limb. Therefore, we examined if it was possible to predict hip bone density using mid-femoral bone density. Methods: Subjects were 803 ambulatory white and black women and men, aged 70-79 years, participating in the Health, Aging and Body Composition (Health ABC) Study. Bone mineral content (BMC, g) and volumetric bone mineral density (vBMD, mg/cm(3)) of the mid-femur were obtained by CT, whereas BMC and areal bone mineral density (aBMD, g/cm(2)) of the hip (femoral neck and trochanter) were derived from DXA. Results: In regression analyses stratified by race and sex, the coefficient of determination was low with mid-femoral BMC, explaining 6-27% of the variance in hip BMC, with a standard error of estimate (SEE) ranging from 16 to 22% of the mean. For mid-femur vBMD, the variance explained in hip aBMD was 2-17% with a SEE ranging from 15 to 18%. Adjusting aBMD to approximate volumetric density did not improve the relationships. In addition, the utility of fracture prediction was examined. Forty-eight subjects had one or more fractures (various sites) during a mean follow-up of 4.07 years. In logistic regression analysis, there was no association between mid-femoral vBMD and fracture (all fractures), whereas a 1 SD increase in hip BMD was associated with reduced odds for fracture of similar to60%. Conclusions: These results do not support the use of CT-derived mid-femoral vBMD or BMC to predict DXA-measured hip bone mineral status, irrespective of race or sex in older adults. Further, in contrast to femoral neck and trochanter BMD, mid-femur vBMD was not able to predict fracture (all fractures). (C) 2003, Editrice Kurtis.
Resumo:
Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.
Resumo:
In this paper, we revisit the surface mass excess in adsorption studies and investigate the role of the volume of the adsorbed phase and its density in the analysis of supercritical gas adsorption in non-porous as well as microporous solids. For many supercritical fluids tested (krypton, argon, nitrogen, methane) on many different carbonaceous solids, it is found that the volume of the adsorbed phase is confined mostly to a geometrical volume having a thickness of up to a few molecular diameters. At high pressure the adsorbed phase density is also found to be very close to but never equal or greater than the liquid phase density. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Simulation of the transport of methane in cylindrical silica mesopores have been performed using equilibrium and nonequilibrium molecular dynamics (NEMD) as well as dual control volume grand canonical molecular dynamics methods. It is demonstrated that all three techniques yield the same transport coefficient even in the presence of viscous flow. A modified locally averaged density model for viscous flow, combined with consideration of wall slip through a frictional condition, gives a convincing interpretation of the variation of the transport coefficient over a wide range of densities, and for various pore sizes and temperatures. Wall friction coefficients extracted from NEMD simulations are found to be consistent with momentum transfer arguments, and the approach is shown to be more meaningful than the classical slip length concept. (C) 2003 American Institute of Physics.
Resumo:
Neste trabalho foi estudado o comportamento de quatro óleos pesados, com densidade API variando de 13,7 a 21,6, frente à adição de gás condensado, com o objetivo de se obter informações relevantes para o processo de escoamento destes óleos. Assim, foi analisado o comportamento da densidade à 20 °C, pontos de fluidez máximo e mínimo, e viscosidade dinâmica à 50 °C dos óleos contendo diferentes concentrações de gás condensado. Também foi analisado o efeito da variação da temperatura sobre a viscosidade dos óleos crus, e, adicionalmente, após o estudo do efeito do gás condensado sobre os óleos, foi avaliado o comportamento da viscosidade dinâmica dos mesmos com a adição de diferentes solventes orgânicos (querosene, aguarrás e tolueno). Os resultados obtidos indicaram que o gás condensado foi eficiente para a redução da densidade, dos pontos de fluidez máximo e mínimo e da viscosidade dos quatros óleos analisados. O óleo A apresentou uma taxa de decaimento da densidade mais baixa do que os outros óleos e foi o que apresentou o comportamento mais próximo de mistura ideal. A amostra de óleo mais pesada (óleo D) foi a que apresentou as maiores variações nos valores dos pontos de fluidez máximo e mínimo com a adição de condensado, chegando a reduzir um total de 19 °C no ponto de fluidez máximo e um total de 21 °C no ponto de fluidez mínimo com a adição de apenas 10,7% v/v de gás condensado. Nos resultados obtidos nas análises da viscosidade dinâmica observou-se que a grande maioria das misturas preparadas apresentou um comportamento de fluido newtoniano. Todas as amostras apresentaram uma notável diminuição da sua viscosidade, chegando a atingir valores percentuais de redução de viscosidade que variaram entre 75 e 91%, na concentração de 14% v/v de gás condensado. A partir desta concentração a viscosidade continua a decair, porém de forma mais atenuada, e o uso do condensado acima desta concentração pode significar gastos desnecessários com o solvente com a finalidade de se reduzir a viscosidade de óleos pesados. O óleo D foi o que apresentou os maiores percentuais de redução da viscosidade enquanto o óleo B foi o que apresentou os mais baixos valores. Comparando o gás condensado aos outros três solventes orgânicos testados, o condensado apresentou um comportamento bem semelhante ao tolueno quando analisadas as suas capacidades de redução da viscosidade dos óleos estudados.
Resumo:
Bone weakening can occur due to the absence of load on the skeleton or even short periods of decreased physical activity. Therefore, musculoskeletal diseases that involve temporary immobilization by casts, inactivity or tension increases the risk of fractures. Physical activity is the most studied procedure both to prevent damage and to restore bone structure. The present study aimed at evaluating, by bone densitometry on rat femurs, the influence of hindlimb unloading and later running activity on treadmill or free movement. Sixty-four Wistar rats were used, aged 65 days with a mean corporal mass of 316.11g, randomly divided into eight experimental groups: group 1, the suspended control with seven animals under hindlimb unloading regimen for 28 days, then euthanized; groups 2 and 3, the trained suspended comprising of 7 and five animals, respectively, subjected to hindlimb unloading for 28 days, followed by treadmill exercise for 28 days (group 2) or 56 days (group 3), then euthanized; groups 4 and 5, designated free suspended, comprised of 7 animals each under hindlimb unloading regimen for 28 days followed by free activity in cages for 28 days (group 4) or 56 days (group 5), then euthanized; groups 6, 7 and 8, negative controls, each with 8 animals allowed to free activity in cages and euthanized at the ages of 93, 121 and 149 days, respectively. Bone mineral density (BMD) of the left femur was analyzed by bone densitometry. Unloading by tail-suspension decreased BMD while treadmill training and free activity in cages promoted its recovery in a similar way and over time.
Resumo:
The objective of this study was to evaluate yield components, leaf nitrogen content and grain yield in corn as affected by row spacing, plant density and nitrogen topdressing. The experiment was conducted with the single-cross hybrid AG 8021, in the municipality of Toledo-PR, in an Oxisoil under no-tillage system, in the crop year 2005/ 2006. The experiment was arranged in a randomized block design and treatments in split-split-plots, with four replications. The two row spacings (0.45 and 0.90 m) were allocated in the main plots, the two plant densities (60,000 and 80,000 plants ha-1) were allocated in the subplots and the three nitrogen rates (80, 100, 120 and 140 kg ha-1 N) were allocated in the sub-subplots. Topdress nitrogen was applied using urea as N source. The rise of the plant population from 60,000 to 80,000 plants ha-1 and the application of topdress nitrogen resulted in increased production components. The application of topdress fertilization provided increase in leaf N content and grain yield for the spacings 0.45 m and 0.90 m. Yield was higher in the spacing 0.45 m than 0.90 m. Yield was higher with 60,000 plants than with 80,000 plants at 0.90 m, while at 0.45 m there was no difference in relation to the plant density.
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.
Resumo:
OBJECTIVES: The current study set out to investigate alcohol availability in a densely populated, residential area of suburban São Paulo associated with high levels of social deprivation and violence. Gun-related deaths and a heavy concentration of alcohol outlets are notable features of the area surveyed. Given the strong evidence for a link between alcohol availability and a number of alcohol-related problems, including violent crime, measures designed to reduce accessibility have become a favored choice for alcohol prevention programs in recent years. METHODS: The interviewers were 24 residents of the area who were trained for the study. It was selected an area of nineteen streets, covering a total distance of 3.7 km. A profile of each alcohol outlet available on the area was recorded. RESULTS: One hundred and seven alcohol outlets were recorded. The number of other properties in the same area was counted at 1,202. Two measures of outlet density may thus be calculated: the number of outlets per kilometer of roadway (29 outlets/km); and the proportion of all properties that sold alcohol (1 in 12). CONCLUSIONS: The results of this study is compared with others which are mainly from developed countries and shown that the area studied have the highest density of alcohol outlet density ever recorded in the medical literature. The implication of this data related to the violence of the region is discussed. By generating a profile of alcohol sales and selling points, it was hoped to gain a better understanding of alcohol access issues within the sample area. Future alcohol prevention policy would be well served by such knowledge.
Resumo:
We investigate whether the liquid-vapour phase transition of strongly dipolar fluids can be understood using a model of patchy colloids. These consist of hard spherical particles with three short-ranged attractive sites (patches) on their surfaces. Two of the patches are of type A and one is of type B. Patches A on a particle may bond either to a patch A or to a patch B on another particle. Formation of an AA (AB) bond lowers the energy by epsilon AA (epsilon AB). In the limit [image omitted], this patchy model exhibits condensation driven by AB-bonds (Y-junctions). Y-junctions are also present in low-density, strongly dipolar fluids, and have been conjectured to play a key role in determining their critical behaviour. We map the dipolar Yukawa hard-sphere (DYHS) fluid onto this 2A + 1B patchy model by requiring that the latter reproduce the correct DYHS critical point as a function of the isotropic interaction strength epsilon Y. This is achieved for sensible values of epsilon AB and the bond volumes. Results for the internal energy and the particle coordination number are in qualitative agreement with simulations of DYHSs. Finally, by taking the limit [image omitted], we arrive at a new estimate for the critical point of the dipolar hard-sphere fluid, which agrees with extrapolations from simulation.
Resumo:
We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures ofparticles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, thespecies differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has threepatches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtureswith bonding energies epsilon(BB) = epsilon(AB) and epsilon(AA) < epsilon(BB), were found to exhibit an unusual negative azeotrope. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561396]
Resumo:
We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]