884 resultados para Cutting of thin metal sheets
Tendon regeneration through a scaffold-free approach: development of tenogenic magnetic hASCs sheets
Resumo:
Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good's buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal-buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
The top soil of a 14.5 km(2) region at la Chaux-de-Fonds in the Swiss Jura is exceptionally rich in cadmium. It contains an average of 1.3 mg per kg of soil. The spatial distribution of the metal has no simple pattern that could be explained by atmospheric deposition or agricultural practices. Thin soil contained most of its Cd at the surface; in thicker soil Cd is mainly concentrated between 60 and 80 cm depth. No specific minerals or soil fractions could account for these accumulation, and the vertical distribution of Cd is best explained by leaching from the topsoil and further adsorption within layers of nearly neutral pH. The local Jurassic sedimentary rocks contained too little Cd to account for the Cd concentrations in the soil. Alpine gravels from glacial till were too sparse in soils to explain such a spreading of Cd. Moreover this origin is contradictory with the fact that Cd is concentrated in the sand fraction of soils. The respective distributions of Fe and Cd in soils, and soil fractions, suggested that the spreading of iron nodules accumulated during the siderolithic period (Eocene) was not the main source of Cd. Atmospheric deposition, and spreading of fertiliser or waste from septic tanks seem the only plausible explanation for the Cd concentrations, but at present few factors allow us to differentiate between them.
Resumo:
Following the introduction of single-metal deposition (SMD), a simplified fingermark detection technique based on multimetal deposition, optimization studies were conducted. The different parameters of the original formula were tested and the results were evaluated based on the contrast and overall aspect of the enhanced fingermarks. The new formula for SMD was found based on the most optimized parameters. Interestingly, it was found that important variations from the base parameters did not significantly affect the outcome of the enhancement, thus demonstrating that SMD is a very robust technique. Finally, a comparison of the optimized SMD with multi-metal deposition (MMD) was carried out on different surfaces. It was demonstrated that SMD produces comparable results to MMD, thus validating the technique.
Resumo:
Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Resumo:
The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.
Resumo:
The relevancy of parasites as potential indicators of environmental quality has been increasing over the last years, mostly due to the variety of ways in which they respond to anthropogenic pollution. The use of fish parasites as bioindicators of heavy metal pollution in aquatic ecosystems has been widely studied. However, little information concerning terrestrial habitats is presently available. In fact, in the last two decades several studies have been performed worldwide in different habitats and/or conditions (theoretically both in polluted and unpolluted terrestrialecosystems, but mainly in aquatic ecosystems) in order to investigate heavy metal pollution using parasitological models. Different groups of vertebrates (mainly fish, mammals and birds) and several parasitological models have been tested involving acanthocephalans mostly, but also cestodes and nematodes. It is not the aim of this chapter to do a complete revision of the availabledata concerning this subject. Instead, we emphasize some general aspects and compile a mini-review of the work performed in this field by our research group. The results obtained until now allow confirming several parasitic models as promising bioindicator systems to evaluate environmental cadmium and mainly lead pollution in terrestrial non-urban habitats, as it was already demonstrated for aquatic ecosystems. The present knowledge also allows confirming that parasites can reveal environmental impact. Environmental parasitology is an interdisciplinary field, which needs simultaneous expertise from toxicology, environmental chemistry and parasitology. Furthermore, environmental parasitology should be taken into account in order to increase the efficiency of environmental monitoring programs.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.
Resumo:
The Iowa road system has approximately 13,000 miles of Portland Cement Concrete Pavements, many of which are reaching the stage where major rehabilitation is required. Age, greater than anticipated traffic, heavier loads and deterioration related to coarse aggregate in the original pavement are some of the reasons that these pavements have reached this level of distress. One method utilized to rehabilitate distressed or underdesigned PCC pavements is the thin bonded Portland Cement Concrete overlay. Since the introduction of thin bonded overlays on highway pavements in 1973, the concrete paving industry has made progress in reducing the construction costs of this rehabilitation technique. With the advent of the shotblast machine, surface preparation costs have decreased from over $4.00 per square yard to most recently $1.42 per square yard. Other construction costs, including placement, grouting and sawing, have also declined. With each project, knowledge and efficiency have improved.
Resumo:
This thesis considers nondestructive optical methods for metal surface and subsurface inspection. The main purpose of this thesis was to study some optical methods in order to find out their applicability to industrial measurements. In laboratory testing the simplest light scattering approach, measurement of specular reflectance, was used for surface roughness evaluation. Surface roughness, curvature and finishing process of metal sheets were determined by specular reflectance measurements. Using a fixed angleof incidence, the specular reflectance method might be automated for industrialinspection. For defect detection holographic interferometry and thermography were compared. Using either holographic interferometry or thermography, relativelysmall-size defects in metal plates could be revealed. Holographic techniques have some limitations for industrial measurements. On the contrary, thermography has excellent prospects for on-line inspection, especially with scanning techniques.
Resumo:
The market place of the twenty-first century will demand that manufacturing assumes a crucial role in a new competitive field. Two potential resources in the area of manufacturing are advanced manufacturing technology (AMT) and empowered employees. Surveys in Finland have shown the need to invest in the new AMT in the Finnish sheet metal industry in the 1990's. In this run the focus has been on hard technology and less attention is paid to the utilization of human resources. In manymanufacturing companies an appreciable portion of the profit within reach is wasted due to poor quality of planning and workmanship. The production flow production error distribution of the sheet metal part based constructions is inspectedin this thesis. The objective of the thesis is to analyze the origins of production errors in the production flow of sheet metal based constructions. Also the employee empowerment is investigated in theory and the meaning of the employee empowerment in reducing the overall production error amount is discussed in this thesis. This study is most relevant to the sheet metal part fabricating industrywhich produces sheet metal part based constructions for electronics and telecommunication industry. This study concentrates on the manufacturing function of a company and is based on a field study carried out in five Finnish case factories. In each studied case factory the most delicate work phases for production errors were detected. It can be assumed that most of the production errors are caused in manually operated work phases and in mass production work phases. However, no common theme in collected production error data for production error distribution in the production flow can be found. Most important finding was still that most of the production errors in each case factory studied belong to the 'human activity based errors-category'. This result indicates that most of the problemsin the production flow are related to employees or work organization. Development activities must therefore be focused to the development of employee skills orto the development of work organization. Employee empowerment gives the right tools and methods to achieve this.
Resumo:
Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.