974 resultados para Contaminants émergents
Resumo:
Immunoassay techniques provide simple, powerful and inexpensive methods for analysis of environmental contaminants. However, the acceptance of immunoassays is dependent on the clear demonstration of quality and validity compared to more traditional techniques. In this review, primarily, the understanding and the fundamentals of immunoassay methods are given in order to make good use of immunoassays, especially of EIA tests. Special attention is given to the concepts related to the enzyme-linked immunosorbent assay (ELISA) formats, such as inhibition concentration at 50% (IC50), detection limit (LOD), cross-reactivity (CR %). It is also explained why some immunoassays are quantitative methods whereas others can only be used as screening methods. A list of main commercial kits for detection of priority pollutants is given in order to help analysts. Others formats, such as flow-injection immunoassay analysis (FIIA), immunoassay chromatography and immunosensors are also cited.
Resumo:
In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.
Resumo:
The alteration in the quality of groundwater in the industrial zone of Brazil's southernmost state was assessed by a hydrogeochemical study. In 70-85% of the studied area, fluoride, nitrate and phosphate in groundwater surpass the maximum limits for human consumption according to Brazilian environmental legislation. The chemical spectrum of contaminants and their spatial distribution show that fertilizer production processes are responsible for groundwater pollution. The natural conditions of the region are not favorable for minimal protection against infiltration of pollutants into the aquifer.
Resumo:
This article aims to explain the main references that characterize the educational research in our context. This requires assessing the main external influences and the way how are you we have been conditioned. Briefly describes the trajectory of specific teaching in Spain give to his creation to the present moment, to understand the passage of its constitution to create the research and its effects. Highlights the emerging methodologies and proposed findings that point to new perspectives on the proposed interdisciplinary teaching compared
Resumo:
This work reports the analysis of inorganic and organic contaminants in alcohol fuel samples using capillary electrophoresis. Chloride and sulfate were analyzed in nitrate/ monochloroacetic acid at 10 mmol L-1 concentration each under indirect UV detection (210 nm). The analysis of aldehydes is based on the 216 nm detection of 3-methyl-2-benzothiazoline hydrazone adducts. The running buffer consisted of 20 mmol L-1 tetraborate , 40 mmol L-1 sodium dodecyl sufate and 12 mmol L-1 beta-ciclodextrin. Both methodologies were applied to real samples indicating inorganic ion concentrations from 0.15 to 6.64 mg kg-1 and aldehydes from 32.0 to 91.3 mg L-1.
Resumo:
Low quality mine drainage from tailings facilities persists as one of the most significant global environmental concerns related to sulphide mining. Due to the large variation in geological and environmental conditions at mine sites, universal approaches to the management of mine drainage are not always applicable. Instead, site-specific knowledge of the geochemical behaviour of waste materials is required for the design and closure of the facilities. In this thesis, tailings-derived water contamination and factors causing the pollution were investigated in two coeval active sulphide mine sites in Finland: the Hitura Ni mine and the Luikonlahti Cu-Zn-Co-Ni mine and talc processing plant. A hydrogeochemical study was performed to characterise the tailingsderived water pollution at Hitura. Geochemical changes in the Hitura tailings were evaluated with a detailed mineralogical and geochemical investigation (solid-phase speciation, acid mine drainage potential, pore water chemistry) and using a spatial assessment to identify the mechanisms of water contamination. A similar spatial investigation, applying selective extractions, was carried out in the Luikonlahti tailings area for comparative purposes (Hitura low-sulphide tailings vs. Luikonlahti sulphide-rich tailings). At both sites, hydrogeochemistry of tailings seepage waters was further characterised to examine the net results of the processes observed within the impoundments and to identify constraints for water treatment. At Luikonlahti, annual and seasonal variation in effluent quality was evaluated based on a four-year monitoring period. Observations pertinent to future assessment and mine drainage prevention from existing and future tailings facilities were presented based on the results. A combination of hydrogeochemical approaches provided a means to delineate the tailings-derived neutral mine drainage at Hitura. Tailings effluents with elevated Ni, SO4 2- and Fe content had dispersed to the surrounding aquifer through a levelled-out esker and underneath the seepage collection ditches. In future mines, this could be avoided with additional basal liners in tailings impoundments where the permeability of the underlying Quaternary deposits is inadequate, and with sufficiently deep ditches. Based on the studies, extensive sulphide oxidation with subsequent metal release may already initiate during active tailings disposal. The intensity and onset of oxidation depended on e.g. the Fe sulphide content of the tailings, water saturation level, and time of exposure of fresh sulphide grains. Continuous disposal decreased sulphide weathering in the surface of low-sulphide tailings, but oxidation initiated if they were left uncovered after disposal ceased. In the sulphide-rich tailings, delayed burial of the unsaturated tailings had resulted in thick oxidized layers, despite the continuous operation. Sulphide weathering and contaminant release occurred also in the border zones. Based on the results, the prevention of sulphide oxidation should already be considered in the planning of tailings disposal, taking into account the border zones. Moreover, even lowsulphide tailings should be covered without delay after active disposal ceases. The quality of tailings effluents showed wide variation within a single impoundment and between the two different types of tailings facilities assessed. The affecting factors included source materials, the intensity of weathering of tailings and embankment materials along the seepage flow path, inputs from the process waters, the water retention time in tailings, and climatic seasonality. In addition, modifications to the tailings impoundment may markedly change the effluent quality. The wide variation in the tailings effluent quality poses challenges for treatment design. The final decision on water management requires quantification of the spatial and seasonal fluctuation at the site, taking into account changes resulting from the eventual closure of the impoundment. Overall, comprehensive hydrogeochemical mapping was deemed essential in the identification of critical contaminants and their sources at mine sites. Mineralogical analysis, selective extractions, and pore water analysis were a good combination of methods for studying the weathering of tailings and in evaluating metal mobility from the facilities. Selective extractions with visual observations and pH measurements of tailings solids were, nevertheless, adequate in describing the spatial distribution of sulphide oxidation in tailings impoundments. Seepage water chemistry provided additional data on geochemical processes in tailings and was necessary for defining constraints for water treatment.
Resumo:
The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly reduce the micropollutant removal rate due to competition of EfOM components to react with radicals and/or molecular ozone. The hydroxyl radical scavenging caused by EfOM was quantified as well as the contribution of molecular ozone and �OH radicals during the ozonation of SE. EfOM components promoted higher inhibition of ATZ oxidation by hydroxyl radicals than by molecular ozone.
Resumo:
Lignin was used as a natural adhesive to manufacture Vitis vinifera fiberboards. The fiberboards were produced at laboratory scale by adding powdered lignin to material that had previously been steam-exploded under optimized pretreatment and pressing conditions. The kraft lignin used was washed several times with an acidic solution to eliminate any contaminants and low molecular weight compounds. This research studied the effects of amounts of lignin ranging from 5% to 20% on the properties of Vitis vinifera fiberboards. The fiberboard properties evaluated were density, water resistance in terms of thickness swelling, water absorption, and the mechanical properties in terms of modulus of rupture, modulus of elasticity, and internal bond. Results showed that fiberboards made from Vitis vinifera without lignin addition had weaker mechanical properties. However, the fiberboards obtained using acid-washed kraft lignin as a natural adhesive had good mechanical and water resistance properties that fully satisfied the relevant standard specifications
Resumo:
This is a review about the use of Blue rayon in the extraction and concentration of environmental contaminants in the aquatic environment. Blue rayon is an adsorbent composed of fibers covalently linked with copper phthalocyanine trisulphonate that has the ability to selectively adsorb polycyclic compounds. Blue rayon can be used in situ, in columns or in flasks. This method showed to be efficient in the extraction of important classes of environmental contaminants like the polycyclic aromatic hydrocarbons (PAHs), aromatic amines and phenylbenzotriazoles (PBTAs) and can be an important tool in monitoring studies for the evaluation of water quality.
Resumo:
Occurrence and removal of 81 representative Pharmaceutical Active Compounds (PhACs) were assessed in a municipal WWTP located in a highly industrialized area, with partial water reuse after UV tertiary treatment and discharge to a Mediterranean river. Water monitoring was performed in an integrated way at different points in the WWTP and river along three seasons. Consistent differences between therapeutic classes were observed in terms of influent concentration, removal efficiencies and seasonal variation. Conventional (primary and secondary) treatment was unable to completely remove numerous compounds and UV-based tertiary treatment played a complementary role for some of them. Industrial activity influence was highlighted in terms of PhACs presence and seasonal distribution. Even if global WWTP effluent impact on the studied river appeared to be minor, PhACs resulted widespread pollutants in river waters. Contamination can be particularly critical in summer in water scarcity areas, when water flow decreases considerably
Resumo:
Wastewater and soil treatment processes based on Fenton's reagent have gained great attention in recent years due to its high oxidation power. This review describes the fundaments of the Fenton and photo-Fenton processes and discusses the main aspects related to the degradation of organic contaminants in water such as the complexation of iron, the use of solar light as the source of irradiation and the most important reactor types used. An overview of the main applications of the process to a variety of industrial wastewater and soil remediations is presented.
Resumo:
Although the hypothesis that environmental chemicals may exhibit endocrine disrupting effects is not new, the issue has been a growing level of concern due to reports of increased incidences of endocrine-related disease in humans, including declining male fertility, and more significantly, to adverse physiological effects observed in wildlife where cause and effect relationships are more evident. The list of endocrine disrupting chemicals (EDCs) includes a range of anthropogenic compounds, phytoestrogens, naturally occurring sex steroids and synthetic estrogens. Within the aquatic environment, the presence of EDCs has concerned many scientists and water quality regulators. Discharge of effluents from treatment facilities is likely to be a significant source of input of contaminants to many systems, and the potential for concentration of hydrophilic compounds and transformation products within sludges has implications for their disposal. Then, understanding the processes and the fate of EDCs on the environment, as well as the mechanisms of endocrine disruption, may facilitate controlling or limiting exposure of both humans and the environment to these compounds.
Resumo:
In this work the adsorption features of hydrotalcites (Al, Mg- CO3) and the magnetic properties of iron oxides have been combined in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for anionic contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic hydrotalcites were characterized by XRD, magnetization measurements, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for anionic contaminants in water.
Resumo:
Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI)). This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI) demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI) and organic matter, respectively.
Resumo:
Something on the level of pure electric vehicle communication is failing. If the benefits are so obvious: reducing emissions, existing technology, etc., why not EV, start to lead the global sales? Whose interests may be behind it?