979 resultados para Constrained nonlinear optimization
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
In this paper, a new v-metric based approach is proposed to design decentralized controllers for multi-unit nonlinear plants that admit a set of plant decompositions in an operating space. Similar to the gap metric approach in literature, it is shown that the operating space can also be divided into several subregions based on a v-metric indicator, and each of the subregions admits the same controller structure. A comparative case study is presented to display the advantages of proposed approach over the gap metric approach. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A chance constrained programming model is developed to assist Queensland barley growers make varietal and agronomic decisions in the face of changing product demands and volatile production conditions. Unsuitable or overlooked in many risk programming applications, the chance constrained programming approach nonetheless aptly captures the single-stage decision problem faced by barley growers of whether to plant lower-yielding but potentially higher-priced malting varieties, given a particular expectation of meeting malting grade standards. Different expectations greatly affect the optimal mix of malting and feed barley activities. The analysis highlights the suitability of chance constrained programming to this specific class of farm decision problem.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
A macrodynamic model is proposed in which the real exchange rate and the elasticity of labour supply interact defining different trajectories of growth and income distribution in a developing economy. Growth depends on imports of capital goods which are paid with exports (there are no capital flows) and hence is constrained by equilibrium in current account. The role of the elasticity of labour supply is to prevent the real exchange rate from appreciating as the economy grows, thereby sustaining international competitiveness. The model allows for endogenous technological change and considers the impact of migration from the subsistence to the modern sector on the cumulative (Kaldor-Verdoorn) process of learning.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
There is a positive correlation between the intensity of use of a given antibiotic and the prevalence of resistant strains. The more you treat, more patients infected with resistant strains appears and, as a consequence, the higher the mortality due to the infection and the longer the hospitalization time. In contrast, the less you treat, the higher the mortality rates and the longer the hospitalization time of patients infected with sensitive strains that could be successfully treated. The hypothesis proposed in this paper is an attempt to solve such a conflict: there must be an optimum treatment intensity that minimizes both the additional mortality and hospitalization time due to the infection by both sensitive and resistant bacteria strains. In order to test this hypothesis we applied a simple mathematical model that allowed us to estimate the optimum proportion of patients to be treated in order to minimize the total number of deaths and hospitalization time due to the infection in a hospital setting. (C) 2007 Elsevier Inc. All rights reserved.