857 resultados para Computing Classification Systems
Resumo:
Increasing the maturity in Project Management (PM) has become a goal for many organizations, leading them to adopt maturity models to assess the current state of its PM practices and compare them with the best practices in the industry where the organization is inserted. One of the main PM maturity models is the Organizational Project Management Maturity Model (OPM3®), developed by the Project Management Institute. This paper presents the Information Systems and Technologies organizations outcome analysis, of the assesses made by the OPM3® Portugal Project, identifying the PM processes that are “best” implemented in this particular industry and those in which it is urgent to improve. Additionally, a comparison between the different organizations’ size analyzed is presented.
Resumo:
The article presents classification of information systems by different parameters. Factors influencing information systems dependability are also presented. The article describes the strategy of information systems dependability analysis and methods of its increase. The example of analysis of real information system is considered to show how to implement the strategy.
Resumo:
The objective of this paper is to measure the impact of different kinds of knowledge and external economies on urban growth in an intraregional context. The main hypothesis is that knowledge leads to growth, and that this knowledge is related to the existence of agglomeration and network externalities in cities. We develop a three-tage methodology: first, we measure the amount and growth of knowledge in cities using the OCDE (2003) classification and employment data; second, we identify the spatial structure of the area of analysis (networks of cities); third, we combine the Glaeser - Henderson - De Lucio models with spatial econometric specifications in order to contrast the existence of spatially static (agglomeration) and spatially dynamic (network) external economies in an urban growth model. Results suggest that higher growth rates are associated to higher levels of technology and knowledge. The growth of the different kinds of knowledge is related to local and spatial factors (agglomeration and network externalities) and each knowledge intensity shows a particular response to these factors. These results have implications for policy design, since we can forecast and intervene on local knowledge development paths.
Resumo:
En este proyecto se han visto dos sistemas de computación distribuida diferentes entre ellos: Condor y BOINC. Se exploran las posibilidades para poder conseguir que ambos sistemas logren trabajar conjuntamente, escogiendo la parte más efectiva de cada uno de los sistemas con el fin de complementarse.
Resumo:
The objective of this work was to characterize, and compare different morphological types of hemocytes of Rhodnius prolixus, Rhodnius, Rhodnius neglectus, Triatoma infestans, Panstrongylus megistus, and Dipetalogaster maximus. This information provides the basis for studying the cellular immune systems of these insects. Seven morphological hemocyte types wereidentified by phase-contrast microscopy: prohemocytes, plasmatocytes, granular cells, cytocytes, oenocytoids, adipohemocytes and giant cells. All seven types of hemocytes are not present in every species. For example, adipohemocytes and oenocytoids were not observed in P. megistus and P. infestans, and giant cells were rarely found in any of the species studied. The hemocytes of rhodnius and Dipetalogaster are more similar to each other than those from Triatoma and Panstrongylus which in turn closely resemble each other. Emphasis is placed on methodological problems arising in this work wicah are discussed in detail.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.
Resumo:
One of the major problems when using non-dedicated volunteer resources in adistributed network is the high volatility of these hosts since they can go offlineor become unavailable at any time without control. Furthermore, the use ofvolunteer resources implies some security issues due to the fact that they aregenerally anonymous entities which we know nothing about. So, how to trustin someone we do not know?.Over the last years an important number of reputation-based trust solutionshave been designed to evaluate the participants' behavior in a system.However, most of these solutions are addressed to P2P and ad-hoc mobilenetworks that may not fit well with other kinds of distributed systems thatcould take advantage of volunteer resources as recent cloud computinginfrastructures.In this paper we propose a first approach to design an anonymous reputationmechanism for CoDeS [1], a middleware for building fogs where deployingservices using volunteer resources. The participants are reputation clients(RC), a reputation authority (RA) and a certification authority (CA). Users needa valid public key certificate from the CA to register to the RA and obtain thedata needed to participate into the system, as now an opaque identifier thatwe call here pseudonym and an initial reputation value that users provide toother users when interacting together. The mechanism prevents not only themanipulation of the provided reputation values but also any disclosure of theusers' identities to any other users or authorities so the anonymity isguaranteed.
Resumo:
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Resumo:
Implementación y evaluación de un algoritmo híbrido que selecciona el conjunto de nodos de menor coste que permite desplegar un servicio, con una disponibilidad determinada, en un entorno de computación voluntaria.
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one