903 resultados para Computer vision industry


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents results from an efficient approach to an automatic detection and extraction of human faces from images with any color, texture or objects in background, that consist in find isosceles triangles formed by the eyes and mouth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several kinds of research in road extraction have been carried out in the last 6 years by the Photogrammetry and Computer Vision Research Group (GPF&VC - Grupo de Pesquisa em Fotogrametria e Visão Computacional). Several semi-automatic road extraction methodologies have been developed, including sequential and optimizatin techniques. The GP-F&VC has also been developing fully automatic methodologies for road extraction. This paper presents an overview of the GP-F&VC research in road extraction from digital images, along with examples of results obtained by the developed methodologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to present the current development status of a low cost system for surface reconstruction with structured light. The acquisition system is composed of a single off-the-shelf digital camera and a pattern projector. A pattern codification strategy was developed to allow the pattern recognition automatically and a calibration methodology ensures the determination of the direction vector of each pattern. The experiments indicated that an accuracy of 0.5mm in depth could be achieved for typical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methods based on visual estimation still is the most widely used analysis of the distances that is covered by soccer players during matches, and most description available in the literature were obtained using such an approach. Recently, systems based on computer vision techniques have appeared and the very first results are available for comparisons. The aim of the present study was to analyse the distances covered by Brazilian soccer players and compare the results to the European players', both data measured by automatic tracking system. Four regular Brazilian First Division Championship matches between different teams were filmed. Applying a previously developed automatic tracking system (DVideo, Campinas, Brazil), the results of 55 outline players participated in the whole game (n = 55) are presented. The results of mean distances covered, standard deviations (s) and coefficient of variation (cv) after 90 minutes were 10,012 m, s = 1,024 m and cv = 10.2%, respectively. The results of three-way ANOVA according to playing positions, showed that the distances covered by external defender (10642 ± 663 m), central midfielders (10476 ± 702 m) and external midfielders (10598 ± 890 m) were greater than forwards (9612 ± 772 m) and forwards covered greater distances than central defenders (9029 ± 860 m). The greater distances were covered in standing, walking, or jogging, 5537 ± 263 m, followed by moderate-speed running, 1731 ± 399 m; low speed running, 1615 ± 351 m; high-speed running, 691 ± 190 m and sprinting, 437 ± 171 m. Mean distance covered in the first half was 5,173 m (s = 394 m, cv = 7.6%) highly significant greater (p < 0.001) than the mean value 4,808 m (s = 375 m, cv = 7.8%) in the second half. A minute-by-minute analysis revealed that after eight minutes of the second half, player performance has already decreased and this reduction is maintained throughout the second half. ©Journal of Sports Science and Medicine (2007).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Automatic inspection of petroleum well drilling has became paramount in the last years, mainly because of the crucial importance of saving time and operations during the drilling process in order to avoid some problems, such as the collapse of the well borehole walls. In this paper, we extended another work by proposing a fast petroleum well drilling monitoring through a modified version of the Optimum-Path Forest classifier. Given that the cutting's volume at the vibrating shale shaker can provide several information about drilling, we used computer vision techniques to extract texture informations from cutting images acquired by a digital camera. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and effciency. We used the Optimum-Path Forest (OPF), EOPF (Efficient OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP) Support Vector Machines (SVM), and a Bayesian Classifier (BC) to assess the robustness of our proposed schema for petroleum well drilling monitoring through cutting image analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time. © 2010 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents three methods for automatic detection of dust devils tracks in images of Mars. The methods are mainly based on Mathematical Morphology and results of their performance are analyzed and compared. A dataset of 21 images from the surface of Mars representative of the diversity of those track features were considered for developing, testing and evaluating our methods, confronting their outputs with ground truth images made manually. Methods 1 and 3, based on closing top-hat and path closing top-hat, respectively, showed similar mean accuracies around 90% but the time of processing was much greater for method 1 than for method 3. Method 2, based on radial closing, was the fastest but showed worse mean accuracy. Thus, this was the tiebreak factor. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Augmented Reality (AR) systems which use optical tracking with fiducial marker for registration have had an important role in popularizing this technology, since only a personal computer with a conventional webcam is required. However, in most these applications, the virtual elements are shown only in the foreground a real element does not occlude a virtual one. The method presented enables AR environments based on fiducial markers to support mutual occlusion between a real element and many virtual ones, according to the elements position (depth) in the environment. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. © 2013 Cruz et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)