960 resultados para Computer engineering|Engineering|Electrical engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by National Science Foundation under Grant No. NSF-GP-7634."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"To be presented at the First Annual IEEE Computer Conference, Chicago, Illinois, September 6-8, 1967."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since multimedia data, such as images and videos, are way more expressive and informative than ordinary text-based data, people find it more attractive to communicate and express with them. Additionally, with the rising popularity of social networking tools such as Facebook and Twitter, multimedia information retrieval can no longer be considered a solitary task. Rather, people constantly collaborate with one another while searching and retrieving information. But the very cause of the popularity of multimedia data, the huge and different types of information a single data object can carry, makes their management a challenging task. Multimedia data is commonly represented as multidimensional feature vectors and carry high-level semantic information. These two characteristics make them very different from traditional alpha-numeric data. Thus, to try to manage them with frameworks and rationales designed for primitive alpha-numeric data, will be inefficient. An index structure is the backbone of any database management system. It has been seen that index structures present in existing relational database management frameworks cannot handle multimedia data effectively. Thus, in this dissertation, a generalized multidimensional index structure is proposed which accommodates the atypical multidimensional representation and the semantic information carried by different multimedia data seamlessly from within one single framework. Additionally, the dissertation investigates the evolving relationships among multimedia data in a collaborative environment and how such information can help to customize the design of the proposed index structure, when it is used to manage multimedia data in a shared environment. Extensive experiments were conducted to present the usability and better performance of the proposed framework over current state-of-art approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation establishes a novel system for human face learning and recognition based on incremental multilinear Principal Component Analysis (PCA). Most of the existing face recognition systems need training data during the learning process. The system as proposed in this dissertation utilizes an unsupervised or weakly supervised learning approach, in which the learning phase requires a minimal amount of training data. It also overcomes the inability of traditional systems to adapt to the testing phase as the decision process for the newly acquired images continues to rely on that same old training data set. Consequently when a new training set is to be used, the traditional approach will require that the entire eigensystem will have to be generated again. However, as a means to speed up this computational process, the proposed method uses the eigensystem generated from the old training set together with the new images to generate more effectively the new eigensystem in a so-called incremental learning process. In the empirical evaluation phase, there are two key factors that are essential in evaluating the performance of the proposed method: (1) recognition accuracy and (2) computational complexity. In order to establish the most suitable algorithm for this research, a comparative analysis of the best performing methods has been carried out first. The results of the comparative analysis advocated for the initial utilization of the multilinear PCA in our research. As for the consideration of the issue of computational complexity for the subspace update procedure, a novel incremental algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast PCA algorithm, was established. In order to utilize the multilinear PCA in the incremental process, a new unfolding method was developed to affix the newly added data at the end of the previous data. The results of the incremental process based on these two methods were obtained to bear out these new theoretical improvements. Some object tracking results using video images are also provided as another challenging task to prove the soundness of this incremental multilinear learning method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of the Internet and the advancements of the Web technologies have made it possible for users to have access to large amounts of on-line music data, including music acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made music listening more fun, but has raised an issue of how to organize this data, and more generally, how computer programs can assist users in their music experience. An important subject in computer-aided music listening is music retrieval, i.e., the issue of efficiently helping users in locating the music they are looking for. Traditionally, songs were organized in a hierarchical structure such as genre->artist->album->track, to facilitate the users’ navigation. However, the intentions of the users are often hard to be captured in such a simply organized structure. The users may want to listen to music of a particular mood, style or topic; and/or any songs similar to some given music samples. This motivated us to work on user-centric music retrieval system to improve users’ satisfaction with the system. The traditional music information retrieval research was mainly concerned with classification, clustering, identification, and similarity search of acoustic data of music by way of feature extraction algorithms and machine learning techniques. More recently the music information retrieval research has focused on utilizing other types of data, such as lyrics, user-access patterns, and user-defined tags, and on targeting non-genre categories for classification, such as mood labels and styles. This dissertation focused on investigating and developing effective data mining techniques for (1) organizing and annotating music data with styles, moods and user-assigned tags; (2) performing effective analysis of music data with features from diverse information sources; and (3) recommending music songs to the users utilizing both content features and user access patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this thesis is placed on text data compression based on the fundamental coding scheme referred to as the American Standard Code for Information Interchange or ASCII. The research objective is the development of software algorithms that result in significant compression of text data. Past and current compression techniques have been thoroughly reviewed to ensure proper contrast between the compression results of the proposed technique with those of existing ones. The research problem is based on the need to achieve higher compression of text files in order to save valuable memory space and increase the transmission rate of these text files. It was deemed necessary that the compression algorithm to be developed would have to be effective even for small files and be able to contend with uncommon words as they are dynamically included in the dictionary once they are encountered. A critical design aspect of this compression technique is its compatibility to existing compression techniques. In other words, the developed algorithm can be used in conjunction with existing techniques to yield even higher compression ratios. This thesis demonstrates such capabilities and such outcomes, and the research objective of achieving higher compression ratio is attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.