987 resultados para Computer Engineering|Remote sensing
Resumo:
The study area consist in high sensitivity environments located on the northern coast of Rio Grande do Norte, Northeast Brazil. The barrier island are the main geomorphological features on the coastal landscape, being naturally instable and surrounded by industrial activities like oil fields, salt industry, shrimp farms and urban areas sometimes installed parallel to the coast, combined with coast engineering interventions. High energy hydrodynamic process are responsible for the morphological instability of the coast. The study was based on remote sensing data obtained between 1954 and 2007 which consist in orbital images from Landsat, CBERS and Ikonos satellites and aerial photos. With all data integrated on GIS environment it was possible to update thematic maps of geology, geomorphology, vegetation, soil and landuse and development of multitemporal maps pointing areas with erosion and depositions of sediments, defining the critical erosion process on this region. The bigger morphological changes are related to changes on wind patterns during the year, terrestrial and sea breezes during the day, with spits and barrier island migration, opening and closing of channels like the one parallel to the coast on the area of Serra and Macau oil fields. These factors combined with the significant reduction on sediment budgets due to the loss of natural spaces to sediment reworking contribute to the low resilience which tends to be growing on the area of Serra and Macau oil fields. In front of such scenery a detailed monitoring was done in order to find technological possibilities for coastal restoration. A pilot area was defined to start the project of mangrove restore together with beach nourishment in order to minimize the effect of the erosion caused by the channel parallel to the coast, contributing to stabilize the northeast channel as the main one. It s expected that such methodology will aid the coastal environments restoration and the balance between industrial activities and coastal erosion
Resumo:
This study includes the results of the analysis of areas susceptible to degradation by remote sensing in semi-arid region, which is a matter of concern and affects the whole population and the catalyst of this process occurs by the deforestation of the savanna and improper practices by the use of soil. The objective of this research is to use biophysical parameters of the MODIS / Terra and images TM/Landsat-5 to determine areas susceptible to degradation in semi-arid Paraiba. The study area is located in the central interior of Paraíba, in the sub-basin of the River Taperoá, with average annual rainfall below 400 mm and average annual temperature of 28 ° C. To draw up the map of vegetation were used TM/Landsat-5 images, specifically, the composition 5R4G3B colored, commonly used for mapping land use. This map was produced by unsupervised classification by maximum likelihood. The legend corresponds to the following targets: savanna vegetation sparse and dense, riparian vegetation and exposed soil. The biophysical parameters used in the MODIS were emissivity, albedo and vegetation index for NDVI (NDVI). The GIS computer programs used were Modis Reprojections Tools and System Information Processing Georeferenced (SPRING), which was set up and worked the bank of information from sensors MODIS and TM and ArcGIS software for making maps more customizable. Initially, we evaluated the behavior of the vegetation emissivity by adapting equation Bastiaanssen on NDVI for spatialize emissivity and observe changes during the year 2006. The albedo was used to view your percentage of increase in the periods December 2003 and 2004. The image sensor of Landsat TM were used for the month of December 2005, according to the availability of images and in periods of low emissivity. For these applications were made in language programs for GIS Algebraic Space (LEGAL), which is a routine programming SPRING, which allows you to perform various types of algebras of spatial data and maps. For the detection of areas susceptible to environmental degradation took into account the behavior of the emissivity of the savanna that showed seasonal coinciding with the rainy season, reaching a maximum emissivity in the months April to July and in the remaining months of a low emissivity . With the images of the albedo of December 2003 and 2004, it was verified the percentage increase, which allowed the generation of two distinct classes: areas with increased variation percentage of 1 to 11.6% and the percentage change in areas with less than 1 % albedo. It was then possible to generate the map of susceptibility to environmental degradation, with the intersection of the class of exposed soil with varying percentage of the albedo, resulting in classes susceptibility to environmental degradation
Resumo:
An approach using straight lines as features to solve the photogrammetric space resection problem is presented. An explicit mathematical model relating straight lines, in both object and image space, is used. Based on this model, Kalman Filtering is applied to solve the space resection problem. The recursive property of the filter is used in an iterative process which uses the sequentially estimated camera location parameters to feedback to the feature extraction process in the image. This feedback process leads to a gradual reduction of the image space for feature searching, and consequently eliminates the bottleneck due to the high computational cost of the image segmentation phase. It also enables feature extraction and the determination of feature correspondence in image and object space in an automatic way, i.e., without operator interference. Results obtained from simulated and real data show that highly accurate space resection parameters are obtained as well as a progressive processing time reduction. The obtained accuracy, the automatic correspondence process, and the short related processing time show that the proposed approach can be used in many real-time machine vision systems, making possible the implementation of applications not feasible until now.
Resumo:
The Brazilian Cartography presents great deficiency in cartographic products updating. This form, Remote Sensins techniques together Digital Processing Images - DPI, are contributing to improve this problem. The Mathematical Morphology theory was used in this work. The principal function was the pruning operator. With its were extracted the interest features that can be used in cartographic process updating. The obtained results are positives and showed the use potential of mathematical morphology theory in cartography, mainly in updating.
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing and geoprocessing allows detection, spatial representation and quantifying all alterations due to the human action in the nature, contributing to the monitoring and planning of those activities that cause damages to the environment. The aim of this research is analyze the transformation ocurred with the land use and vegetation in order to detect environmental impacts during the period from 1962 to 1995, considering a test area in the district of Assistência and surroundings, in the Rio Claro (SP) region. In order to archieve such aim the authors used boolean operations available in the Geographical Information System (GIS) - Idrisi. The maps were obtained through the ordinary (conventional) interpretation of aerial photos, later digitized in the software CAD Overlay and georeferenced in AutoCAD Map. It's observed that operations such as crossing digitized maps of one specific area in two differents dates, using GIS, produce overall results that might point out expansion or retraction's trends of the mapped classes, as well as quantify the intensity of the phenomena.
Resumo:
The mapping of the land use, vegetation and environmental impacts using remote sensing ana geoprocessmg allow detection, spatial representation and quantification of the alterations caused by the human action on the nature, contributing to the monitoring and planning of those activities that may cause damages to the environment. This study apply methodologies based on digital processing of orbital images for the mapping of the land use, vegetation and anthropic activities that cause impacts in the environment. It was considered a test area in the district of Assistência and surroundings, in Rio Claro (SP) region. The methodology proposed was checked through the crossing of maps in the software GIS - Idrisi. These maps either obtained with conventional interpretation of aerial photos of 1995, digitized in the software CAD Overlay and geo-referenced in the AutoCAD Map, or with the application of digital classification systems on SPOT-XS and PAN orbital images of 1995, followed by field observations. The crossing of conventional and digital maps of a same area with the CIS allows to verify the overall results obtained through the computational handling of orbital images. With the use of digital processing techniques, specially multiespectral classification, it is possible to detect automatically and visually the impacts related to the mineral extraction, as well as to survey the land use, vegetation and environmental impacts.
Resumo:
The edges detection model by a non-linear anisotropic diffusion, consists in a mathematical model of smoothing based in Partial Differential Equation (PDE), alternative to the conventional low-pass filters. The smoothing model consists in a selective process, where homogeneous areas of the image are smoothed intensely in agreement with the temporal evolution applied to the model. The level of smoothing is related with the amount of undesired information contained in the image, i.e., the model is directly related with the optimal level of smoothing, eliminating the undesired information and keeping selectively the interest features for Cartography area. The model is primordial for cartographic applications, its function is to realize the image preprocessing without losing edges and other important details on the image, mainly airports tracks and paved roads. Experiments carried out with digital images showed that the methodology allows to obtain the features, e.g. airports tracks, with efficiency.
Resumo:
The aim of this present work was to compare planialtimetric charts obtained from different risings using two different theodolite types, a total station, and a precision level, used as control. Using a total station, an area was marked with clear variations of relief, following a grid, with a distance of 20 meters among stakes. After that, the stakes were read by the total station and two theodolites of different precisions. The geometric leveling was done by a precision level. The data were input in the DataGeosis software and the numerical modelling of the land was made with mesh of maximum rigidity, generating planialtimetric representation for each rising. It was verified, through comparison of the four representations that little variations occur in relation to the control. The closest representation of the control was the planialtimetry based on the data from the total station, in which the representations obtained from the theodolites were identical among themselves. It was concluded that in the process of obtaining detailed planialtimetry of small areas, submitted to the grid, it was not necessary to use composed geometric leveling, reducing work to the exclusive use of a total station or conventional theodolite.
Resumo:
The objective of this work was to implant a geodesic pillar in the campus of Botucatu (Rubião Júnior) of the São Paulo State University (UNESP), using active stations of the Brazilian Net of Continuous Monitoring (RBMC) as reference, aiming at inclusion in the Brazilian Geodesic System (BGS). In the planning of the trace, some aspects of the pillar optimization were considered: the field evaluation, the equipment Receiver GPS Topcon Hiper GGD and the net RBMC were used to trace the height, and the Topcon Tools 6.04 version software was use for the data processing, the ambiguity solution, as well as the treatment of injunctions during the column adjustment. The obtained results allowed the implantation of a more accurate pillar then 1ppm compatible to the RBMC net, meeting the specification of IBGE.
Resumo:
The outdating of cartographic products affects planning. It is important to propose methods to help detect changes in surface. Thus, the combined use of remote sensing image and techniques of digital image processing has contributed significantly to minimize such outdating. Mathematical morphology is an image processing technique which describes quantitatively geometric structures presented in the image and provides tools such as edge detectors and morphological filters. Previous studies have shown that the technique has potential on the detection of significant features. Thus, this paper proposes a routine of morphological operators to detect a road network. The test area corresponds to an excerpt Quickbird image and has as a feature of interest an avenue of the city of Presidente Prudente, SP. In the processing, the main morphological operators used were threshad, areaopen, binary and erosion. To estimate the accuracy with which the linear features were detected, it was done the analysis of linear correlation between vectors of the features detected and the corresponding topographical map of the region. The results showed that the mathematical morphology can be used in cartography, aiming to use them in conventional cartographic updating processes.
Resumo:
Brazil has an important role in the biomass burning, with the detection of approximately 100,000 burning spots in a single year (2007). Most of these spots occur in the southern part of the Amazon basin during the dry season (from August to november) and these emissions reach the southeast of the country, a highly populated region and with serious urban air pollution problems. With the growing demand on biofuels, sugarcane is considerably expanding in the state of São Paulo, being a strong contributor to the bad air quality in this region. In the state of São Paulo, the main land use are pasture and sugarcane crop, that covers around 50% and 10% of the total area, respectively. Despite the aerosol from sugarcane burning having reduced atmospheric residence time, from a few days to some weeks, they might get together with those aerosol which spread over long distances (hundreds to thousands of kilometers). In the period of June through February 2010 a LIDAR observation campaign was carried in the state of São Paulo, Brazil, in order to observe and characterize optically the aerosols from two distinct sources, namely, sugar cane biomass burning and industrial emissions. For this purpose 2 LIDAR systems were available, one mobile and the other placed in a laboratory, both working in the visible (532 nm) and additionally the mobile system had a Raman channel available (607 nm). Also this campaign counted with a SODAR, a meteorological RADAR specially set up to detect aerosol echoes and gas-particle analyzers. To guarantee a good regional coverage 4 distinct sites were available to deploy the instruments, 2 in the near field of biomass burning activities (Rio Claro and Bauru), one for industrial emissions (Cubatão) and others from urban sources (São Paulo). The whole campaign provide the equivalent of 30 days of measurements which allowed us to get aerosol optical properties such as backscattering/extinction coefficients, scatter and LIDAR ratios, those were used to correlate with air quality and meteorological indicators and quantities. In this paper we should focus on the preliminary results of the Raman LIDAR system and its derived aerosol optical quantities. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
We are investigating the combination of wavelets and decision trees to detect ships and other maritime surveillance targets from medium resolution SAR images. Wavelets have inherent advantages to extract image descriptors while decision trees are able to handle different data sources. In addition, our work aims to consider oceanic features such as ship wakes and ocean spills. In this incipient work, Haar and Cohen-Daubechies-Feauveau 9/7 wavelets obtain detailed descriptors from targets and ocean features and are inserted with other statistical parameters and wavelets into an oblique decision tree. © 2011 Springer-Verlag.
Resumo:
The central and western portion of the S̃ao Paulo State has large areas of sugar cane plantations, and due to the growing demand for biofuels, the production is increasing every year. During the harvest period some plantation areas are burnt a few hours before the manual cutting, causing significant quantities of biomass burning aerosol to be injected into the atmosphere. During August 2010, a field campaign has been carried out in Ourinhos, situated in the south-western region of S̃ao Paulo State. A 2-channel Raman Lidar system and two meteorological S-Band Doppler Radars are used to indentify and quantify the biomass burning plumes. In addiction, CALIPSO Satellite observations were used to compare the aerosol optical properties detected in that region with those retrieved by Raman Lidar system. Although the campaign yielded 30 days of measurements, this paper will be focusing only one case study, when aerosols released from nearby sugar cane fires were detected by the Lidar system during a CALIPSO overpass. The meteorological radar, installed in Bauru, approximately 110 km northeast from the experimental site, had recorded echoes (dense smoke comprising aerosols) from several fires occurring close to the Raman Lidar system, which also detected an intense load of aerosol in the atmosphere. HYSPLIT model forward trajectories presented a strong indication that both instruments have measured the same air masss parcels, corroborated with the Lidar Ratio values from the 532 nm elastic and 607 nm Raman N2 channel analyses and data retrieved from CALIPSO have indicated the predominance of aerosol from biomass burning sources. © 2011 SPIE.
Resumo:
Works of linear engineering such as roads, pipelines and transmission lines have specific mapping due to their large scale impact on the environment, thus requiring mapping methods that are both efficient and of low cost. This paper presents a proposal of Geoenvironmental mapping for works linear. The work chosen for the implementation of the method was the Osvat/Osplan pipeline located in the cities of São Sebastião and Caraguatatuba. The geoenvironment mapping was elaborate trough photo-interpretation of images of the ETM+/Landsat-7 sensor and analysis of the drainage network, thus resulting in the partitioning of the geoenvironmental units and the fracture area (structural lineaments and lines of strikes), these maps were subsequently integrated into a product called Map of environmental susceptibility to gravitational and erosive processes, which helped define the areas with potential geotechnical problems that could damage both the pipeline and the environment.