884 resultados para Computational Geometry and Object Modelling
Resumo:
This study examined the effects of computer assisted instruction (CAI) 1 hour per week for 18 weeks on changes in computational scores and attitudes of developmental mathematics students at schools with predominantly Black enrollment. Comparisons were made between students using CAI with differing software--PLATO, CSR or both together--and students using traditional instruction (TI) only.^ This study was conducted in the Dade County Public School System from February through June 1991, at two senior high schools. The dependent variables, the State Student Assessment Test (SSAT), and the School Subjects Attitude Scales (SSAS), measured students' computational scores and attitudes toward mathematics in 3 categories: interest, usefulness, and difficulty, respectively.^ Univariate analyses of variance were performed on the least squares mean differences from pretest to posttest for testing main effects and interactions. A t-test measured significant main effects and interactions. Results were interpreted at the.01 level of significance.^ Null hypotheses 1, 2, and 3 compared versions of CAI with the control group, for changes in mathematical computation scores measured with the SSAT. It could not be concluded that changes in standardized mathematics test scores of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were significantly higher than changes in test scores for students receiving TI only.^ Null hypotheses 4, 5, and 6 tested the effects of CAI for attitudes toward mathematics for experimental groups against control groups measured with the SSAS. Changes in attitudes toward mathematics of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were not significantly higher than attitude changes for students receiving TI only.^ Teacher effect on students' computational scores was a more influential variable than CAI. No interaction was found between gender and learning method on standardized mathematics test scores (null hypothesis 7). ^
Resumo:
Article Accepted Date: 29 May 2014 Acknowledgements The authors gratefully acknowledge the support of the Cognitive Science Society for the organisation of the Workshop on Production of Referring Expressions: Bridging the Gap between Cognitive and Computational Approaches to Reference, from which this special issue originated. Funding Emiel Krahmer and Albert Gatt thank The Netherlands Organisation for Scientific Research (NWO) for VICI grant Bridging the Gap between Computational Linguistics and Psycholinguistics: The Case of Referring Expressions (grant number 277-70-007).
Resumo:
The central dogma of molecular biology relies on the correct Watson-Crick (WC) geometry of canonical deoxyribonucleic acid (DNA) dG•dC and dA•dT base pairs to replicate and transcribe genetic information with speed and an astonishing level of fidelity. In addition, the Watson-Crick geometry of canonical ribonucleic acid (RNA) rG•rC and rA•rU base pairs is highly conserved to ensure that proteins are translated with high fidelity. However, numerous other potential nucleobase tautomeric and ionic configurations are possible that can give rise to entirely new pairing modes between the nucleotide bases. Very early on, James Watson and Francis Crick recognized their importance and in 1953 postulated that if bases adopted one of their less energetically disfavored tautomeric forms (and later ionic forms) during replication it could lead to the formation of a mismatch with a Watson-Crick-like geometry and could give rise to “natural mutations.”
Since this time numerous studies have provided evidence in support of this hypothesis and have expanded upon it; computational studies have addressed the energetic feasibilities of different nucleobases’ tautomeric and ionic forms in siico; crystallographic studies have trapped different mismatches with WC-like geometries in polymerase or ribosome active sites. However, no direct evidence has been given for (i) the direct existence of these WC-like mismatches in canonical DNA duplex, RNA duplexes, or non-coding RNAs; (ii) which, if any, tautomeric or ionic form stabilizes the WC-like geometry. This thesis utilizes nuclear magnetic resonance (NMR) spectroscopy and rotating frame relaxation dispersion (R1ρ RD) in combination with density functional theory (DFT), biochemical assays, and targeted chemical perturbations to show that (i) dG•dT mismatches in DNA duplexes, as well as rG•rU mismatches RNA duplexes and non-coding RNAs, transiently adopt a WC-like geometry that is stabilized by (ii) an interconnected network of rapidly interconverting rare tautomers and anionic bases. These results support Watson and Crick’s tautomer hypothesis, but additionally support subsequent hypotheses invoking anionic mismatches and ultimately tie them together. This dissertation shows that a common mismatch can adopt a Watson-Crick-like geometry globally, in both DNA and RNA, and whose geometry is stabilized by a kinetically linked network of rare tautomeric and anionic bases. The studies herein also provide compelling evidence for their involvement in spontaneous replication and translation errors.
Resumo:
Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
Visual recognition is a fundamental research topic in computer vision. This dissertation explores datasets, features, learning, and models used for visual recognition. In order to train visual models and evaluate different recognition algorithms, this dissertation develops an approach to collect object image datasets on web pages using an analysis of text around the image and of image appearance. This method exploits established online knowledge resources (Wikipedia pages for text; Flickr and Caltech data sets for images). The resources provide rich text and object appearance information. This dissertation describes results on two datasets. The first is Berg’s collection of 10 animal categories; on this dataset, we significantly outperform previous approaches. On an additional set of 5 categories, experimental results show the effectiveness of the method. Images are represented as features for visual recognition. This dissertation introduces a text-based image feature and demonstrates that it consistently improves performance on hard object classification problems. The feature is built using an auxiliary dataset of images annotated with tags, downloaded from the Internet. Image tags are noisy. The method obtains the text features of an unannotated image from the tags of its k-nearest neighbors in this auxiliary collection. A visual classifier presented with an object viewed under novel circumstances (say, a new viewing direction) must rely on its visual examples. This text feature may not change, because the auxiliary dataset likely contains a similar picture. While the tags associated with images are noisy, they are more stable when appearance changes. The performance of this feature is tested using PASCAL VOC 2006 and 2007 datasets. This feature performs well; it consistently improves the performance of visual object classifiers, and is particularly effective when the training dataset is small. With more and more collected training data, computational cost becomes a bottleneck, especially when training sophisticated classifiers such as kernelized SVM. This dissertation proposes a fast training algorithm called Stochastic Intersection Kernel Machine (SIKMA). This proposed training method will be useful for many vision problems, as it can produce a kernel classifier that is more accurate than a linear classifier, and can be trained on tens of thousands of examples in two minutes. It processes training examples one by one in a sequence, so memory cost is no longer the bottleneck to process large scale datasets. This dissertation applies this approach to train classifiers of Flickr groups with many group training examples. The resulting Flickr group prediction scores can be used to measure image similarity between two images. Experimental results on the Corel dataset and a PASCAL VOC dataset show the learned Flickr features perform better on image matching, retrieval, and classification than conventional visual features. Visual models are usually trained to best separate positive and negative training examples. However, when recognizing a large number of object categories, there may not be enough training examples for most objects, due to the intrinsic long-tailed distribution of objects in the real world. This dissertation proposes an approach to use comparative object similarity. The key insight is that, given a set of object categories which are similar and a set of categories which are dissimilar, a good object model should respond more strongly to examples from similar categories than to examples from dissimilar categories. This dissertation develops a regularized kernel machine algorithm to use this category dependent similarity regularization. Experiments on hundreds of categories show that our method can make significant improvement for categories with few or even no positive examples.
Resumo:
International audience
Resumo:
We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible discontinuous Galerkin Navier?Stokes solver, provides very similar results to classical linear instability analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier?Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the linearised Navier?Stokes equations, and showing the potential of this type of analysis based on snapshots to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD technique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised and adjoint linearised Navier?Stokes equations advanced in time. Subsequently, these modes are used to provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and complex geometries, at an affordable computational cost. The information provided by the sensitivity study is used to modify the L-shaped geometry and control the most unstable 3D mode.
Resumo:
Multi-agent systems offer a new and exciting way of understanding the world of work. We apply agent-based modeling and simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between people management practices on the shop-floor and retail performance. Despite the fact we are working within a relatively novel and complex domain, it is clear that using an agent-based approach offers great potential for improving organizational capabilities in the future. Our multi-disciplinary research team has worked closely with one of the UK’s top ten retailers to collect data and build an understanding of shop-floor operations and the key actors in a department (customers, staff, and managers). Based on this case study we have built and tested our first version of a retail branch agent-based simulation model where we have focused on how we can simulate the effects of people management practices on customer satisfaction and sales. In our experiments we have looked at employee development and cashier empowerment as two examples of shop floor management practices. In this paper we describe the underlying conceptual ideas and the features of our simulation model. We present a selection of experiments we have conducted in order to validate our simulation model and to show its potential for answering “what-if” questions in a retail context. We also introduce a novel performance measure which we have created to quantify customers’ satisfaction with service, based on their individual shopping experiences.
Resumo:
A subfilter-scale (SFS) stress model is developed for large-eddy simulations (LES) and is tested on various benchmark problems in both wall-resolved and wall-modelled LES. The basic ingredients of the proposed model are the model length-scale, and the model parameter. The model length-scale is defined as a fraction of the integral scale of the flow, decoupled from the grid. The portion of the resolved scales (LES resolution) appears as a user-defined model parameter, an advantage that the user decides the LES resolution. The model parameter is determined based on a measure of LES resolution, the SFS activity. The user decides a value for the SFS activity (based on the affordable computational budget and expected accuracy), and the model parameter is calculated dynamically. Depending on how the SFS activity is enforced, two SFS models are proposed. In one approach the user assigns the global (volume averaged) contribution of SFS to the transport (global model), while in the second model (local model), SFS activity is decided locally (locally averaged). The models are tested on isotropic turbulence, channel flow, backward-facing step and separating boundary layer. In wall-resolved LES, both global and local models perform quite accurately. Due to their near-wall behaviour, they result in accurate prediction of the flow on coarse grids. The backward-facing step also highlights the advantage of decoupling the model length-scale from the mesh. Despite the sharply refined grid near the step, the proposed SFS models yield a smooth, while physically consistent filter-width distribution, which minimizes errors when grid discontinuity is present. Finally the model application is extended to wall-modelled LES and is tested on channel flow and separating boundary layer. Given the coarse resolution used in wall-modelled LES, near the wall most of the eddies become SFS and SFS activity is required to be locally increased. The results are in very good agreement with the data for the channel. Errors in the prediction of separation and reattachment are observed in the separated flow, that are somewhat improved with some modifications to the wall-layer model.
Resumo:
Myocardial fibrosis detected via delayed-enhanced magnetic resonance imaging (MRI) has been shown to be a strong indicator for ventricular tachycardia (VT) inducibility. However, little is known regarding how inducibility is affected by the details of the fibrosis extent, morphology, and border zone configuration. The objective of this article is to systematically study the arrhythmogenic effects of fibrosis geometry and extent, specifically on VT inducibility and maintenance. We present a set of methods for constructing patient-specific computational models of human ventricles using in vivo MRI data for patients suffering from hypertension, hypercholesterolemia, and chronic myocardial infarction. Additional synthesized models with morphologically varied extents of fibrosis and gray zone (GZ) distribution were derived to study the alterations in the arrhythmia induction and reentry patterns. Detailed electrophysiological simulations demonstrated that (1) VT morphology was highly dependent on the extent of fibrosis, which acts as a structural substrate, (2) reentry tended to be anchored to the fibrosis edges and showed transmural conduction of activations through narrow channels formed within fibrosis, and (3) increasing the extent of GZ within fibrosis tended to destabilize the structural reentry sites and aggravate the VT as compared to fibrotic regions of the same size and shape but with lower or no GZ. The approach and findings represent a significant step toward patient-specific cardiac modeling as a reliable tool for VT prediction and management of the patient. Sensitivities to approximation nuances in the modeling of structural pathology by image-based reconstruction techniques are also implicated.
Resumo:
This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.
Resumo:
Prokaryotic organisms are one of the most successful forms of life, they are present in all known ecosystems. The deluge diversity of bacteria reflects their ability to colonise every environment. Also, human beings host trillions of microorganisms in their body districts, including skin, mucosae, and gut. This symbiosis is active for all other terrestrial and marine animals, as well as plants. With the term holobiont we refer, with a single word, to the systems including both the host and its symbiotic microbial species. The coevolution of bacteria within their ecological niches reflects the adaptation of both host and guest species, and it is shaped by complex interactions that are pivotal for determining the host state. Nowadays, thanks to the current sequencing technologies, Next Generation Sequencing, we have unprecedented tools for investigating the bacterial life by studying the prokaryotic genome sequences. NGS revolution has been sustained by the advancements in computational performance, in terms of speed, storage capacity, algorithm development and hardware costs decreasing following the Moore’s Law. Bioinformaticians and computational biologists design and implement ad hoc tools able to analyse high-throughput data and extract valuable biological information. Metagenomics requires the integration of life and computational sciences and it is uncovering the deluge diversity of the bacterial world. The present thesis work focuses mainly on the analysis of prokaryotic genomes under different aspects. Being supervised by two groups at the University of Bologna, the Biocomputing group and the group of Microbial Ecology of Health, I investigated three different topics: i) antimicrobial resistance, particularly with respect to missense point mutations involved in the resistant phenotype, ii) bacterial mechanisms involved in xenobiotic degradation via the computational analysis of metagenomic samples, and iii) the variation of the human gut microbiota through ageing, in elderly and longevous individuals.