801 resultados para Cognitive Radio Sensor Networks (CRSN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental monitoring has become a key aspect in food production over the last few years. Due to their low cost, low power consumption and flexibility, Wireless Sensor Networks (WSNs) have turned up as a very convenient tool to be used in these environments where no intrusion is a must. In this work, a WSN application in a food factory is presented. The paper gives an overview of the system set up, covering from the initial study of the parameters and sensors, to the hardware-software design and development needed for the final tests in the factory facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a WSN Support Tool for developing, testing, monitoring and debugging new application prototypes in a reliable and robust way is proposed, by combining a Hardware -Software Integration Platform with the implementation of a parallel communication channel that helps users to interact to the experiments in runtime without interfering in the operation of the wireless network. As a pre-deployment tool, prototypes can be validated in a real environment before implementing them in the final application, aiming to increase the effectiveness and efficiency of the technology. This infrastructure is the support of CookieLab: a WSN testbed based on the Cookie Nodes Platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overview of preliminary results of investigations within the WHERE2 Project on identifying promising avenues for location aided enhancements to wireless communication systems. The wide ranging contributions are organized according to the following targeted systems: cellular networks, mobile ad hoc networks (MANETs) and cognitive radio. Location based approaches are found to alleviate significant signaling overhead in various forms of modern communication paradigms that are very information hungry in terms of channel state information at the transmitter(s). And this at a reasonable cost given the ubiquitous availability of location information in recent wireless standards or smart phones. Location tracking furthermore opens the new perspective of slow fading prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low-energy consumption of IEEE 802.15.4 networks makes it a strong candidate for machine-to-machine (M2M) communications. As multiple M2M applications with 802.15.4 networks may be deployed closely and independently in residential or enterprise areas, supporting reliable and timely M2M communications can be a big challenge especially when potential hidden terminals appear. In this paper, we investigate two scenarios of 802.15.4 network-based M2M communication. An analytic model is proposed to understand the performance of uncoordinated coexisting 802.15.4 networks. Sleep mode operations of the networks are taken into account. Simulations verified the analytic model. It is observed that reducing sleep time and overlap ratio can increase the performance of M2M communications. When the networks are uncoordinated, reducing the overlap ratio can effectively improve the network performance. © 2012 Chao Ma et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the reformation of spectrum policy and the development of cognitive radio, secondary users will be allowed to access spectrums licensed to primary users. Spectrum auctions can facilitate this secondary spectrum access in a market-driven way. To design an efficient auction framework, we first study the supply and demand pressures and the competitive equilibrium of the secondary spectrum market, considering the spectrum reusability. In well-designed auctions, competition among participants should lead to the competitive equilibrium according to the traditional economic point of view. Then, a discriminatory price spectrum double auction framework is proposed for this market. In this framework, rational participants compete with each other by using bidding prices, and their profits are guaranteed to be non-negative. A near-optimal heuristic algorithm is also proposed to solve the auction clearing problem of the proposed framework efficiently. Experimental results verify the efficiency of the proposed auction clearing algorithm and demonstrate that competition among secondary users and primary users can lead to the competitive equilibrium during auction iterations using the proposed auction framework. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Editorial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication through relay channels in wireless sensor networks can create diversity and consequently improve the robustness of data transmission for ubiquitous computing and networking applications. In this paper, we investigate the performances of relay channels in terms of diversity gain and throughput via both experimental research and theoretical analysis. Two relaying algorithms, dynamic relaying and fixed relaying, are utilised and tested to find out what the relay channels can contribute to system performances. The tests are based on a wireless relay sensor network comprising a source node, a destination node and a couple of relay nodes, and carried out in an indoor environment with rare movement of objects nearby. The tests confirm, in line with the analytical results, that more relay nodes lead to higher diversity gain in the network. The test results also show that the data throughput between the source node and the destination node is enhanced by the presence of the relay nodes. Energy consumption in association with the relaying strategy is also analysed. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.