907 resultados para Coeficientes de wavelet
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Programa de doctorado: Salud, Actividad Física y Rendimiento Deportivo
Resumo:
[ES] El interés científico en la meditación ha crecido significativamente en las últimas décadas. La meditación es, tal vez, la práctica más adecuada para investigar las propiedades intrínsecas del Sistema nervioso autónomo (SNA), dado que conlleva un estado de total inmovilidad física y de cierto aislamiento del exterior (interiorización). En meditación, ya que no hay movimiento físico, el patrón respiratorio es ajustado según el proceso mental. Así, la modulación que ejerce la respiración sobre la frecuencia cardiaca está relacionada a la cualidad y al enfoque de la atención en la práctica. De los resultados obtenidos en nuestra investigación, podemos concluir que hay patrones específicos de variabilidad de la frecuencia cardiaca (VFC) que parecen reflejar fases o etapas en la práctica. Así, sujetos con una experiencia en meditación similar tienden a mostrar patrones análogos de variabilidad cardiaca. A medida que se progresa en la práctica meditativa, los diferentes sistemas oscilantes tienden a interaccionar entre ellos, hasta culminar con la aparición de un efecto resonante que establece un ?nuevo orden? en el sistema. Este proceso parece reflejar cambios graduales en la actividad del SNA para alcanzar un "modo de funcionamiento de bajo coste", donde los diversos mecanismos oscilatorios que intervienen en el control de la circulación sanguínea operan a la misma frecuencia. El fenómeno de resonancia implica un ?modo de funcionamiento de bajo coste? que probablemente favorece la práctica de la meditación. Así, este estado de ?orden? (aunque no sin variabilidad) podría ser considerado un atractor, al cual el sistema tiende a evolucionar cuando se haya alcanzado un nivel avanzado de mindfulness. El concepto de atractor, procedente de las modernas teorías que tratan con la dinámica de sistemas complejos no-lineales, parece mostrarse útil para describir de manera heurística el comportamiento del sistema en estados meditativos profundos. Los resultados obtenidos en esta tesis apoyan y complementan otros trabajos anteriores, además se añade la idea de una adaptación fisiológica gradual a la práctica de la meditación mindfulness, caracterizada por cambios específicos en la regulación autonómica de la VFC en las diferentes etapas de la práctica. Para el análisis de las series fisiológicas, de carácter fuertemente no lineal, se han implementado técnicas basadas en el análisis Wavelet y Dinámica Simbólica.
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.
Resumo:
Le wavelet sono una nuova famiglia di funzioni matematiche che permettono di decomporre una data funzione nelle sue diverse componenti in frequenza. Esse combinano le proprietà dell’ortogonalità, il supporto compatto, la localizzazione in tempo e frequenza e algoritmi veloci. Sono considerate, perciò, uno strumento versatile sia per il contenuto matematico, sia per le applicazioni. Nell’ultimo decennio si sono diffuse e imposte come uno degli strumenti migliori nell’analisi dei segnali, a fianco, o addirittura come sostitute, dei metodi di Fourier. Si parte dalla nascita di esse (1807) attribuita a J. Fourier, si considera la wavelet di A. Haar (1909) per poi incentrare l’attenzione sugli anni ’80, in cui J. Morlet e A. Grossmann definiscono compiutamente le wavelet nel campo della fisica quantistica. Altri matematici e scienziati, nel corso del Novecento, danno il loro contributo a questo tipo di funzioni matematiche. Tra tutti emerge il lavoro (1987) della matematica e fisica belga, I. Daubechies, che propone le wavelet a supporto compatto, considerate la pietra miliare delle applicazioni wavelet moderne. Dopo una trattazione matematica delle wavalet, dei relativi algoritmi e del confronto con il metodo di Fourier, si passano in rassegna le principali applicazioni di esse nei vari campi: compressione delle impronte digitali, compressione delle immagini, medicina, finanza, astonomia, ecc. . . . Si riserva maggiore attenzione ed approfondimento alle applicazioni delle wavelet in campo sonoro, relativamente alla compressione audio, alla rimozione del rumore e alle tecniche di rappresentazione del segnale. In conclusione si accenna ai possibili sviluppi e impieghi delle wavelet nel futuro.
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
Wir betrachten einen zeitlich inhomogenen Diffusionsprozess, der durch eine stochastische Differentialgleichung gegeben wird, deren Driftterm ein deterministisches T-periodisches Signal beinhaltet, dessen Periodizität bekannt ist. Dieses Signal sei in einem Besovraum enthalten. Wir schätzen es mit Hilfe eines nichtparametrischen Waveletschätzers. Unser Schätzer ist von einem Wavelet-Dichteschätzer mit Thresholding inspiriert, der 1996 in einem klassischen iid-Modell von Donoho, Johnstone, Kerkyacharian und Picard konstruiert wurde. Unter gewissen Ergodizitätsvoraussetzungen an den Prozess können wir nichtparametrische Konvergenzraten angegeben, die bis auf einen logarithmischen Term den Raten im klassischen iid-Fall entsprechen. Diese Raten werden mit Hilfe von Orakel-Ungleichungen gezeigt, die auf Ergebnissen über Markovketten in diskreter Zeit von Clémencon, 2001, beruhen. Außerdem betrachten wir einen technisch einfacheren Spezialfall und zeigen einige Computersimulationen dieses Schätzers.
Resumo:
WaveTrack é un'implementazione ottimizzata di un algoritmo di pitch tracking basato su wavelet, nello specifico viene usata la trasformata Fast Lifting Wavelet Transform con la wavelet di Haar. La libreria è stata scritta nel linguaggio C e tra le sue peculiarità può vantare tempi di latenza molto bassi, un'ottima accuratezza e una buona flessibilità d'uso grazie ad alcuni parametri configurabili.