978 resultados para Co-targeted inhibition
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
Background: Enhanced cardiac matrix metalloproteinase activity (MMPs) has been associated with ventricular remodeling and cardiac dysfunction. It is unknown whether MMPs contribute to systolic/diastolic dysfunction and compensatory remodeling in 2-kidney, 1-clip (2K1C) hypertensive rats. To test this hypothesis, we used 2K1C rats after 2 weeks of surgery treated or not with a nonspecific inhibitor of MMPs (doxycycline). Methods and Results: We found that blood pressure and +/-dP/dt increased in 2K1C rats compared with sham groups, and these parameters were attenuated by doxycycline treatment (P < .05). Doxycycline also reversed cardiac hypertrophy observed in 2K1C rats (P < .05). Hypertensive rats showed increased MMP-2 levels in zymograms and in the tissue by immunofluorescence (P < .05) compared with sham groups. Increased total gelatinolytic activity was observed in untreated 2K1C rats when compared with sham groups (P < .05). Doxycycline decreased total gelatinolytic activity in 2K1C rats to control levels (P < .05). Conclusion: An imbalance in gelatinolytic activity, with increased MMP-2 levels and activity underlies the development of morphological and functional alterations found in the compensatory hypertrophy observed in 2K1C hearts. Because function and structure were restored by doxycycline, the inhibition of MMPs or their modulation may provide beneficial effects for therapeutic intervention in cardiac hypertrophy. (J Cardiac Fail 2010;16:599-608)
Resumo:
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by iv. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6 h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6 h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6 h post-injection. LPS significantly increased plasma OT concentration at 2 and 4 h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We genetically modified Eclipta alba using Agrobacterium rhizogenes LBA 9402, with the aim of producing secondary metabolites with pharmacological properties against phospholipase A(2) and the myotoxic activities of snake venom. Extracts from in natura aerial parts and roots, both native and genetically modified (in vitro), were prepared and analysed by high-performance liquid chromatography. In natura materials showed the coumestan wedelolactone at higher concentration in the aerial parts, while demethylwedelolactone appeared at higher concentration in roots. Among the modified roots, clone 19 showed higher concentrations of these coumestans. Our results show that the in natura extracts of plants collected from Botucatu and Ribeirao Preto were efficient in inhibiting snake venom phospholipase A(2) activity. Regarding in vitro material, the best effect against Crotalus durissus terrificus venom was that of clone 19. Clone 19 and isolated coumestans (wedelolactone and demethylwedelolactone) inhibited the myotoxic activity induced by basic phospholipases A(2) isolated from the venoms of Crotalus durissus terrificus (CB) and Bothrops jararacussu (BthTX-I and II). The search for antivenom is justified by the need of finding active principles that are more efficient in neutralizing snake venoms and also as an attempt to complement serum therapy.
Resumo:
Background: This study examined the effect of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task. Methods: Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design. Results: Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms. Conclusions: These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.
Resumo:
Paracoccidioiodomycosis (PCM) is a systemic and deep mycosis endemic in Latin America, especially in Brazil. In patients infected with human immunodeficiency virus (HIV), PCM can manifest with prominent involvement of the reticuloendothelial system. There are no reports in the literature of esophageal involvement by PCM in that population. We report a case of PCM with pulmonary and esophageal involvement without radiologic evidence of an esophageal-bronchial fistula in an HIV-infected patient.
Resumo:
Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and beta(2)-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced beta(2)-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3`5`-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.
Resumo:
Central chemoreception, the detection of CO(2)/H(+) within the brain and the resultant effect on ventilation, was initially localized at two areas on the ventrolateral medulla, one rostral (rVLM-Mitchell`s) the other caudal (cVLM-Loeschcke`s), by surface application of acidic solutions in anesthetized animals. Focal dialysis of a high CO(2)/H(+) artificial cerebrospinal fluid (aCSF) that produced a milder local pH change in unanesthetized rats (like that with a similar to 6.6 mm Hg increase in arterial P(CO2)) delineated putative chemoreceptor regions for the rVLM at the retrotrapezoid nucleus and the rostral medullary raphe that function predominantly in wakefulness and sleep, respectively. Here we ask if chemoreception in the cVLM can be detected by mild focal stimulation and if it functions in a state dependent manner. At responsive sites just beneath Loeschcke`s area, ventilation was increased by, on average, 17% (P < 0.01) only in wakefulness. These data support our hypothesis that central chemoreception is a distributed property with some sites functioning in a state dependent manner. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Systemic or intra-striatal acute administration of nitric oxide synthase (NOS) inhibitors causes catalepsy in rodents. This effect disappears after sub-chronic treatment. The aim of the present study was to investigate if this tolerance is related to changes in the expression of NOS or dopamine-2 (D(2)) receptor or to a recovery of NOS activity. Male albino Swiss mice (25-30 g) received single or sub-chronic (once a day for 4 days) i.p. injections of saline or L-nitro-arginine (L-NOARG, 40 mg/kg), a non-selective inhibitor of neuronal nitric oxide synthase (nNOS). Twenty-four hours after the last injection, the animals were killed and their brains were removed for immunohistochemistry assay to detect the presence of nNOS or for `in-situ` hybridisation study using (35)S-labeled oligonucleotide probe complementary to D(2) receptor mRNA. The results were analysed by computerised densitometry. Independent groups of animals received the same treatment, but were submitted to the catalepsy test and had their brain removed to measure nitrite and nitrate (NOx) concentrations in the striatum. Acute administration of L-NOARG caused catalepsy that disappeared after sub-chronic treatment. The levels of NOx were significantly reduced after acute L-NOARG treatment. The decrease in NOx after drug injection suffered a partial tolerance after sub-chronic treatment. The catalepsy time after acute or sub-chronic treatment with L-NOARG was negatively (r = -0.717) correlated with NOx levels. Animals that received repeated L-NOARG injections also showed an increase in the number of nNOS-positive neurons in the striatum. No change in D(2) receptor mRNA expression was found in the dorsal striatum, nucleus accumbens and substantia nigra. Together, these results suggest that tolerance to L-NOARG cataleptic effects do not depend on changes in D(2) receptors. They may depend, however, on plastic changes in nNOS neurons resulting in partial recovery of NO formation in the striatum.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Treatment of Aspergillus niveus with 30 mu g tunicamycin/ml did not interfere with alpha-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, similar to 56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65A degrees C). The K(m) and V(max) values of under- and fully-glycosylated forms of alpha-glucosidase were similar when assessed for hydrolysis of starch (similar to 0.6 mg/ml, similar to 350 mu mol glucose per min per ml), maltose (similar to 0.54 mu mol, similar to 330 mu mol glucose per min per ml) and p-nitrophenyl-alpha-d-glucopyranoside (similar to 0.54 mu mol, similar to 8.28 mu mol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.