842 resultados para Cluster anaysis
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
Modelling the fundamental performance limits of wireless sensor networks (WSNs) is of paramount importance to understand the behaviour of WSN under worst case conditions and to make the appropriate design choices. In that direction, this paper contributes with a methodology for modelling cluster tree WSNs with a mobile sink. We propose closed form recurrent expressions for computing the worst case end to end delays, buffering and bandwidth requirements across any source-destination path in the cluster tree assuming error free channel. We show how to apply our theoretical results to the specific case of IEEE 802.15.4/ZigBee WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study, therefore validating the theoretical results through experimentation.
Resumo:
Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.
Resumo:
The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.
Resumo:
Local Tourist Systems (LTS) can be analyzed according to an investigation structure that derives from industrial economics on industrial districts, local productive systems or learning regions. LTS concept is a useful analytical tool that can seize the resorts diversity and organization. Resorts can be conceived both as clusters or industrial districts, either with a perfect agreement between productive sphere and local community or a mere industrial juxtaposition without any economic or social connection. On the other hand tourist clusters analysis has cross referred almost exclusively to socio-economic criteria. Environmental issues were almost disregarded. Approaches swing from the “greening” of products and practices to initiatives focused on an integrated approach, linking environment and tourist development. This paper tries to discuss how to favor – inside a tourist destination - the creation of clusters grounded on sustainable tourism. The case studies (the 5 Alentejo Natural Reserves: Estuário do Sado; Lagoas de Santo André e da Sancha; Vale do Guadiana; Sudoeste Alentejano e Costa Vicentina; Serra de S. Mamede) are analyzed under the light of how microstructures groups can allow a territorial sustainable tourist development. The issues of “resources and competences” and “governance” ar
Resumo:
Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em e-Planeamento
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
To assess the effectiveness of a school based physical activity programme during one school year on physical and psychological health in young schoolchildren. Cluster randomised controlled trial. 28 classes from 15 elementary schools in Switzerland randomly selected and assigned in a 4:3 ratio to an intervention (n=16) or control arm (n=12) after stratification for grade (first and fifth grade), from August 2005 to June 2006. 540 children, of whom 502 consented and presented at baseline. Children in the intervention arm (n=297) received a multi-component physical activity programme that included structuring the three existing physical education lessons each week and adding two additional lessons a week, daily short activity breaks, and physical activity homework. Children (n=205) and parents in the control group were not informed of an intervention group. For most outcome measures, the assessors were blinded. Primary outcome measures included body fat (sum of four skinfolds), aerobic fitness (shuttle run test), physical activity (accelerometry), and quality of life (questionnaires). Secondary outcome measures included body mass index and cardiovascular risk score (average z score of waist circumference, mean blood pressure, blood glucose, inverted high density lipoprotein cholesterol, and triglycerides). 498 children completed the baseline and follow-up assessments (mean age 6.9 (SD 0.3) years for first grade, 11.1 (0.5) years for fifth grade). After adjustment for grade, sex, baseline values, and clustering within classes, children in the intervention arm compared with controls showed more negative changes in the z score of the sum of four skinfolds (-0.12, 95 % confidence interval -0.21 to -0.03; P=0.009). Likewise, their z scores for aerobic fitness increased more favourably (0.17, 0.01 to 0.32; P=0.04), as did those for moderate-vigorous physical activity in school (1.19, 0.78 to 1.60; P<0.001), all day moderate-vigorous physical activity (0.44, 0.05 to 0.82; P=0.03), and total physical activity in school (0.92, 0.35 to 1.50; P=0.003). Z scores for overall daily physical activity (0.21, -0.21 to 0.63) and physical quality of life (0.42, -1.23 to 2.06) as well as psychological quality of life (0.59, -0.85 to 2.03) did not change significantly. A school based multi-component physical activity intervention including compulsory elements improved physical activity and fitness and reduced adiposity in children. Trial registration Current Controlled Trials ISRCTN15360785.
Resumo:
Childhood obesity and physical inactivity are increasing dramatically worldwide. Children of low socioeconomic status and/or children of migrant background are especially at risk. In general, the overall effectiveness of school-based programs on health-related outcomes has been disappointing. A special gap exists for younger children and in high risk groups. This paper describes the rationale, design, curriculum, and evaluation of a multicenter preschool randomized intervention study conducted in areas with a high migrant population in two out of 26 Swiss cantons. Twenty preschool classes in the German (canton St. Gallen) and another 20 in the French (canton Vaud) part of Switzerland were separately selected and randomized to an intervention and a control arm by the use of opaque envelopes. The multidisciplinary lifestyle intervention aimed to increase physical activity and sleep duration, to reinforce healthy nutrition and eating behaviour, and to reduce media use. According to the ecological model, it included children, their parents and the teachers. The regular teachers performed the majority of the intervention and were supported by a local health promoter. The intervention included physical activity lessons, adaptation of the built infrastructure; promotion of regional extracurricular physical activity; playful lessons about nutrition, media use and sleep, funny homework cards and information materials for teachers and parents. It lasted one school year. Baseline and post-intervention evaluations were performed in both arms. Primary outcome measures included BMI and aerobic fitness (20 m shuttle run test). Secondary outcomes included total (skinfolds, bioelectrical impedance) and central (waist circumference) body fat, motor abilities (obstacle course, static and dynamic balance), physical activity and sleep duration (accelerometry and questionnaires), nutritional behaviour and food intake, media use, quality of life and signs of hyperactivity (questionnaires), attention and spatial working memory ability (two validated tests). Researchers were blinded to group allocation. The purpose of this paper is to outline the design of a school-based multicenter cluster randomized, controlled trial aiming to reduce body mass index and to increase aerobic fitness in preschool children in culturally different parts of Switzerland with a high migrant population. Trial Registration: (clinicaltrials.gov) NCT00674544.
Resumo:
Segment poses and joint kinematics estimated from skin markers are highly affected by soft tissue artifact (STA) and its rigid motion component (STARM). While four marker-clusters could decrease the STA non-rigid motion during gait activity, other data, such as marker location or STARM patterns, would be crucial to compensate for STA in clinical gait analysis. The present study proposed 1) to devise a comprehensive average map illustrating the spatial distribution of STA for the lower limb during treadmill gait and 2) to analyze STARM from four marker-clusters assigned to areas extracted from spatial distribution. All experiments were realized using a stereophotogrammetric system to track the skin markers and a bi-plane fluoroscopic system to track the knee prosthesis. Computation of the spatial distribution of STA was realized on 19 subjects using 80 markers apposed on the lower limb. Three different areas were extracted from the distribution map of the thigh. The marker displacement reached a maximum of 24.9mm and 15.3mm in the proximal areas of thigh and shank, respectively. STARM was larger on thigh than the shank with RMS error in cluster orientations between 1.2° and 8.1°. The translation RMS errors were also large (3.0mm to 16.2mm). No marker-cluster correctly compensated for STARM. However, the coefficient of multiple correlations exhibited excellent scores between skin and bone kinematics, as well as for STARM between subjects. These correlations highlight dependencies between STARM and the kinematic components. This study provides new insights for modeling STARM for gait activity.
Resumo:
Banco del conocimiento