1000 resultados para Closure temperatures


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mytilus edulis adapted to cyclic temperatures by reducing the amplitude of response of oxygen consumption and filtration rate over a period of approximately two weeks, and thereby increasing their independence of temperature within the range of the fluctuating regime. When acclimated to cyclic temperature regimes within the range from 6 to 20°C, the metabolic and feeding rates, measured at different temperatures in the cycle, were not significantly different from the adapted response to equivalent constant temperatures. Physiological adaptation ofMytilus edulis to different thermal environments was reflected in their metabolic and feeding rate-temperature curves. Animals subjected to marked diel fluctuations in environmental temperature showed an appropriate region of temperature-independence, whereas animals from a population not experiencing large diel temperature fluctuations showed no region of temperature-independence. In a fluctuating thermal environment which extended above the normal environmental maxima, respiratory adaptation occurred at higher temperatures than was possible in a constant thermal environment. The feeding rate was also maintained at higher temperatures in a cyclic regime than was possible under constant thermal conditions. This represented a shortterm extension of the zone of activity in a fluctuating thermal environment. The net result of these physiological responses to high cyclic and constant temperatures has been assessed in terms of ‘scope for growth’. Animals acclimated to cyclic temperatures between 21 and 29°C had a higher scope for growth at 29°C and were less severely stressed than those maintained at the constant temperature of 29°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The social dimensions of marine protected areas (MPAs) play an important role in MPA success, yet these social dimensions are little understood. We explore the social impacts arising from the establishment of an MPA using Lyme Bay (south west England) as a case study. Through a series of small group semi-structured interviews the social impacts experienced by fishermen (mobile and static gear), recreational users (divers and sea anglers) and recreation service providers (charter boat and dive businesses) were explored. The social impacts expressed varied according to activity in which the stakeholder group engaged. Negative themes included lengthening fishing trips, tension and conflict, fishermen identity, equity and uncertainty in the long-term. Positive themes included improved experiences for both commercial fishermen and recreational users, and expectations for long-term benefits. These impacts need to be understood because they influence stakeholder behaviour. Failure to interpret stakeholder responses may lead to poor decision-making and worsening stakeholder relations. These findings have implications for the success of the MPA in Lyme Bay, but also for the future network of marine conservation zones around the UK. Any assessment of MPA impacts must therefore identify social as well as economic and environmental change.