435 resultados para Clostridium septicum
Resumo:
Trabajo realizado por: Maldonado, F.; Packard, T.; Gómez, M.; Santana Rodríguez, J. J
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
SAPK/JNK regulieren nach genotoxischem Stress eine Vielzahl von Zielsubstraten, die bedeutsam für Reparatur und Überleben der Zelle sind, somit nehmen sie Einfluss auf das zelluläre Schicksal der Zelle. Ob DNA-Schäden eine Phosphorylierung von Stress-Kinasen nach sich ziehen ist bisher noch wenig untersucht. Mit reparaturdefizienten Zellen wurde der Einfluss von DNA-Schäden, durch Cisplatin/Transplatin/UV-C, auf die SAPK/JNK Aktivierung untersucht. Die Aktivierung der Stress-Kinasen erfolgte agenzspezifisch und abhängig von verschieden Reparaturfaktoren. Die Aktivierung korrelierte in reparaturdefizienten Zellen teilweise mit dem späten Auftreten von DNA-Strangbrüchen, war jedoch unabhängig von erhöhten initialen DNA-Schäden. Diese Befunde zeigten, dass die späte Aktivierung der SAPK/JNK DNA-schadensabhängig verläuft und das Cisplatin und Transplatin bei Verwendung von äquitoxischen Dosen zu einer vergleichbaren Aktivierung von SAPK/JNK führten. Die Hemmung der Rho-GTPasen sowohl durch Statine als auch mittels Clostridium difficile Toxin B zeigte weiterhin, dass Rho-GTPasen möglicherweise die späte DNA-schadensabhängige Aktivierung der Stress-Kinasen vermitteln. Die Hemmung von Rho-GTPasen durch physiologisch relevante Konzentrationen von Statinen führte in primären humanen Endothelzellen (HUVECs) zu einer Protektion vor IR-Strahlung und Doxorubicin. In beiden Fällen konnte eine Hemmung des pro-apoptotischen Transkriptionsfaktors p53 sowie der Chk1, welche einen Zellzyklusarrest reguliert, mit der Statin-Behandlung erreicht werden. Effektor-Caspasen wurden dabei durch den HMG-CoA-Reduktase Hemmer nicht beeinflusst. Ausschließlich bei dem Statin-vermittelten Schutz vor Doxorubicin kam es zu einer Reduktion von initialen DNA-Schäden, in Form von DNA-Strangbrüchen. Die IR-induzierten Strangbrüche in der DNA blieben von der Statin-Inkubation hingegen unbeeinflusst. Aufgrund ihrer protektiven Eigenschaften gegenüber IR- und Doxorubicin-induzierter Zytotoxizität in Endothelzellen und ihrer pro-apoptotischen Wirkung auf Tumorzellen könnten Statine möglicherweise die unerwünschten Nebenwirkungen von Zytostatika und einer Strahlentherapie günstig beeinflussen
Resumo:
In NawaRo-Biogasanlagen (BGA) kann es durch das Angebot an leicht fermentierbaren Kohlenstoff¬quel¬len zu einer bakteriell bedingten Übersäuerung durch unerwünschte kurzkettige Fettsäuren kommen. Häufiger kommt es zur Akkumulation von Propionsäure. Methanogene Archaea können bei niedrigen pH-Werten nicht mehr wachsen. Somit kann der gesamte Prozess der mikrobiellen Bildung von Biogas zum Erliegen kom¬men, was für die Biogasbetreiber zu erheblichen finanziellen Verlusten führt. Das Ziel dieser Disserta¬tion war die Aufklärung der anaeroben bakteriellen Population, die in Biogasanlagen Propionsäure ab¬bauen kann. Aus Propionat entsteht dabei Acetat und Wasserstoff. Da dieser anaerobe Prozess endergon verläuft, kann Propionsäure anaerob nur abgebaut werden, wenn der Wasserstoffpartialdruck niedrig ge¬halten wird. Diese Aufgabe erfüllen in Biogasanalgen methanogene Archaea. Die sog. sekundären Gärer leben somit in synthropher Kultur mit methanogenen Archaea.rnIn dieser Arbeit wurden die Mikroorganismen von Propionsäure-abbauenden Anreicherungskulturen aus vier NawaRo-BGA‘s identifiziert und ihr Substrat- und Produktspektrum analysiert. Die Anreicherungskul¬turen wurden vom Prüf- und Forschungsinstitut e. V. in Pirmasens zur Verfügung gestellt. Durch Analyse der bakteriellen 16S rDNA-Sequenzen der erhaltenen stabilen Propionsäure-abbauenden Mischkulturen wurde gezeigt, dass sich unter den Bakterien hauptsächlich Verwandte von den Clostridiales, aber auch Bacteroides sp., δ-, ε- so¬wie γ-Proteobakterien, Spirochäten, Synergistales und ungewöhnlicher Weise auch Thermotogales befanden. Aus Propionsäure-abbauenden Mischkulturen und aus Fermentern mesophiler NawaRo-Biogasanlagen wurden anaerobe Bakterien und methanogene Archaea angereichert und isoliert. Es wurden aus den Propionsäure-abbauenden Mischkulturen Stämme in Reinkultur erhalten, die entsprechend der 16S rDNA-Analyse als Clostridium sartagoforme Stamm Ap1a520 und Proteiniphilum acetatigenes Stamm Fp1a520 identifiziert wurden. Sowohl aus Fermentern und Nachgärern von drei NawaRo-BGA‘s als auch aus zwei Laborfermentern des Leibniz-Instituts für Agrartechnik in Potsdam-Bornim e.V. (ATB) wurden Reinkulturen von methanogenen Archaea erhalten. Diese konnten den Species Methanobacterium formicicum, Metha¬noculleus bourgensis, Methanosarcina barkeri, Methanosarcina mazei, Methanosarcina sp., Methanosaeta concilii und Methanomethylovorans sp. zugeordnet werden. Damit wurden in dieser Arbeit unter anderem die typischen bisher nur durch molekularbiologische Methoden identifizierten Species methanogener Ar¬chaea aus unterschiedlichen Fermentern in Reinkultur erhalten. Dabei wurde gezeigt, dass die specifically amplified polymorphic DNA-PCR (SAPD-PCR) eine geeignete Methode darstellt, Stämme der gleichen Art methanogener Archaea voneinander zu unterscheiden. Die Methanproduktion der kultivierten methanoge¬nen Archaea wurde gaschromatographisch analysiert. Es zeigte sich, dass die hydrogenotrophe Metha¬nogenese der effizientere und ergiebigere Weg zur Bildung von Methan ist. Mit der Bestimmung der Zellzahl des Isolates Methanoculleus bourgensis Stamm TAF1.1 bei gleichzeitiger Messung der Methanbildung wurde gezeigt, dass die Methanbildung nicht zwangsläufig mit dem Wachstum korreliert. Ne-ben Pflanzenfasern beinhalteten das hergestellte Reaktorfiltrat in den Kultivierungsansätzen Acetat, die essentielle Aminosäure Valin und den Zuckeralkohol Glycerol. Gezielte Misch¬kul¬turen von sekundären Gärern mit methanogenen Isolaten ergaben einen fördernden Einfluss auf diese Bak¬terien durch hydrogenotrophe Archaea. Diese Bakterien bauten Substrate ab oder bildeten Produkte, die sie unter den gegebenen Bedingungen ohne hydrogenotrophe Archaea nicht umsetzen konnten.
Resumo:
In der vorliegenden Arbeit wurden Essigsäure-, Propionsäure und Buttersäure-bildende Bakterien aus einer thermophilen und drei mesophilen Biogasanlagen sowie aus zwei Hochdruck-Biogas-Laborfermentern isoliert. Die Fermenter waren mit dem nachwachsenden Rohstoff Maissilage, teilweise mit Rinder- oder Schweinegülle und weiteren festen Inputstoffen gefüttert. Für die Isolierung von Säure-bildenden Bakterien wurde ein Mineralsalzmedium verwendet, welchem als Kohlenstoffquelle Na-DL-Laktat, Succinat, Ethanol, Glycerin, Glucose oder eine Aminosäuremischung (Alanin, Serin, Threonin, Glutaminsäure, Methionin und Cystein) hinzugefügt wurde. Hierbei handelt es sich um Substrate, welche beim anaeroben Abbau während der Hydrolyse oder der primären Gärung entstehen können. Die erhaltenen Isolate waren in der Lage, aus diesen Substraten Essigsäure, Propionsäure oder Buttersäure zu bilden. Insgesamt wurden aus den beprobten Anlagen 49 Isolate gewonnen, welche zu den Phyla Firmicutes, Tenericutes oder Thermotogae gehörten. Mit Hilfe von 16S rDNA-Sequenzen konnten die meisten Isolate als Clostridium sporosphaeroides, Defluviitoga tunisiensis und Dendrosporobacter sp. identifiziert werden. Die Bildung von Essigsäure, Propionsäure oder Buttersäure wurde in Kulturen von Isolaten festgestellt, welche als folgende Arten identifiziert wurden: Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, Clostridium sporosphaeroides, Dendrosporobacter sp., Proteiniborus sp., Selenomonas bovis und Tepidanaerobacter sp. Zwei Isolate, verwandt mit Thermoanaerobacterium thermosaccharolyticum, konnten Buttersäure und Milchsäure bilden. In Kulturen von Defluviitoga tunisiensis wurde Essigsäurebildung festgestellt. Ein Vergleich der 16S rDNA-Sequenzen mit Datenbanken und die Ergebnisse der PCR-Amplifikationen mit Isolat-spezifischen Primerpaaren ergaben zusätzlich Hinweise, dass es sich bei einigen Isolaten um neue Arten handeln könnte (z. B. Stamm Tepidanaerobacter sp. AS34, Stamm Proteiniborus sp. ASG1.4, Stamm Dendrosporobacter sp. LG2.4, Stamm Desulfotomaculum sp. EG2.4, Stamm Gallicola sp. SG1.4B und Stamm Acholeplasma sp. ASSH51). Durch die Entwicklung Isolat-spezifischer Primerpaare, abgeleitet von 16S rDNA-Sequenzen der Isolate oder Referenzstämmen, konnten die Isolate in Biogasanlagen detektiert und mittels qPCR quantifiziert werden (hauptsächlich im Bereich zwischen 1000 bis 100000000 Kopien der 16S rDNA/g BGA-Probe). Weiterhin konnten die Isolate mit Hilfe physiologischer Versuche charakterisiert und deren Rolle in der anaeroben Abbaukette diskutiert werden. Die Art Defluviitoga tunisiensis scheint eine große Bedeutung in Biogasanlagen zu spielen. Defluviitoga tunisiensis wurde am häufigsten in Untersuchungen im Rahmen der vorliegenden Arbeit isoliert und konnte auch mit Hilfe des entwickelten Primerpaares in hohen Abundanzen in den beprobten Biogasanlagen detektiert werden (10000 - 100000000 Kopien der 16S rDNA/g BGA-Probe). Die manuelle Annotation des Gesamtgenoms sowie die Substratverwertungsversuche haben gezeigt, dass Defluviitoga tunisiensis ein sehr breites Substratspektrum in der Verwertung von Kohlenhydraten besitzt und dadurch möglicherweise eine wichtige Rolle bei der Verwertung von Biomasse in Biogasanlagen einnimmt. Mit Hilfe der Ergebnisse der vorliegenden Arbeit konnten somit neue Einblicke in die zweite Stufe des anaeroben Abbaus, die Acidogenese, in Biogasanlagen gegeben werden. rn
Resumo:
We report the case of a 24-years old diabetic women hospitalised because of right-sided lower abdominal pain and diarrhea. She fulminantly developed shock before appendectomy could be performed and was transferred to intensive care unit. Hypotension remained and laparoscopy revealed primary peritonitis and toxic shock syndrome by Group A Streptococcus which was cultivated in blood and ascites. Therapy with penicilline and clindamycine resolved symptoms. During hospitalisation Clostridium difficile colitis occurred. This complication leaded to prolonged hospitalisation.
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
In Switzerland, the incidence of equine botulism and acute pasture myodystrophy have remarkably increased in the last five years. Equine fodder-borne botulism in Europe is most likely caused by Clostridium botulinum types C and D that produce the toxins BoNT/C and BoNT/D. Horses showing signs suggestive of botulism (muscle weakness and tremors, reduced tongue tone, slow chewing, salivation and difficulties swallowing, drooping eyelids, mydriasis), especially patients that have fed on suspect fodder (mostly haylage), must be treated with anti-serum as soon as possible.They also need intensive care, which is often difficult to provide and always expensive in the face of a guarded to poor prognosis. Therefore, prevention (high standards of forage quality and vaccination) is all the more important. Pasture myodystrophy is an acute disease with signs of rhabdomyolysis and lethality rate over 90%. It affects grazing horses under frosty, windy and rainy conditions. Preliminary results indicate that Clostridium sordellii and Clostridium bifermentans producing lethal toxin may play a role in pasture myodystrophy. Our efforts concentrate on developing a new subunit vaccine for equine botulism and understanding the ethiology and pathogenesis of pasture myodystrophy with the goal of improving prevention against these highly fatal diseases that present a significant risk to our horse population.
Resumo:
BACKGROUND: Dysphagia is seldom caused by tetanus; however, it is a common symptom of tetanus. Treating patients with tetanus is a rare event in industrialized countries and awareness is needed to recognize early signs of this serious disease. In Switzerland, the most recently reported tetanus cases occurred in elderly women with insufficient seroprotection. PATIENTS: We report on three elderly women presenting with dysphagia as an initial symptom of tetanus. RESULTS: Generalized tetanus was diagnosed in two patients upon admission, the third presented with cephalic tetanus with secondary generalization. All three patients had undetectable levels of tetanus antibodies and had no documented prior tetanus immunizations. Cultures of wound swabs grew Clostridium tetani in all cases. Electromyography was highly suggestive for tetanus in two patients. Treatment involved mechanical ventilation, intravenous benzodiazepine and metronidazole therapy, and active and passive tetanus immunization. The disease had a favorable outcome in two cases and was fatal in one. CONCLUSION: Tetanus remains a threat in patients with insufficient seroprotection and efforts are needed to improve tetanus immunization in these individuals. Tetanus should be considered in the differential diagnosis of dysphagia.
Resumo:
A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance.
Resumo:
This work presents the proceedings of the twelfth symposium which was held at Kansas State University on April 24, 1982. Since a number of the contributions will be published in detail elsewhere, only brief reports are included here. Some of the reports describe current progress with respect to ongoing projects. Requests for further information should be directed to Dr. Peter Reilly at Iowa State University, Dr. V. G. Murphy at Colorado State University, Dr. Rakesh Bajpai at University of Missouri, Dr. Ed Clausen at University of Arkansas, Dr. L. T. Fan and Dr. L. E. Erickson at Kansas State University. ContentsA Kinetic Analysis of Oleaginous Yeast Fermentation by Candida curvata on Whey Permeate, B.D. Brown and K.H. Hsu, Iowa State University Kinetics of Biofouling in Simulated Water Distribution Systems Using CSTR, T.M. Prakash, University of Missouri Kinetics of Gas Production by C. acetobutylicum, Michael Doremus, Colorado State University Large Scale Production of Methane from Agricultural Residues, O.P. Doyle, G.C. Magruder, E.C. Clausen, and J.L. Gaddy, University of Arkansas The Optimal Process Design for Enzymatic Hydrolysis of Wheat Straw, M.M Gharpuray and L.T. Fan, Kansas State University Extractive Butanol Fermentation, Michael Sierks, Colorado State University Yields Associated with Ethyl Alcohol Production, M.D. Oner, Kansas State University Estimation of Growth Yield and Maintenance Parameters for Microbial Growth on Corn Dust, B.O. Solomon, Kansas State University Milling of Ensiled Corn, Andrzej Neryng, Iowa State University Protein Extraction from Alfalfa, Ravidranath Joshi, Colorado State University Analysis of Disaccharides by Capillary Gas Chromatography, Z.L. Nikolov, Iowa State University Characterization of High Viscosity Fermentations in Tower Fermentors, S.A. Patel and C.H. Lee, Kansas State University Utilization of Sugars in Sorghum Molasses by Clostridium acetobutylicum B. Hong, K.C. Shin, and L.T. Fan, Kansas State University
Resumo:
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.
Resumo:
Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^
Resumo:
A common complication of antibiotic use is the development of diarrheal illness. The pathogenesis of antibiotic associated diarrhea (AAD) may be mediated through alteration of intestinal microbiota, overgrowth of opportunistic pathogens, and direct drug toxicity on the gut. Alterations in the intestinal microbiota result in metabolic imbalances, loss of colonization resistance and in turn allow proliferation of opportunistic pathogens. Currently less than 33% of AAD cases can be attributable to Clostridium difficile leaving a large number of cases undiagnosed and poorly treated. Although the pathogenesis of Clostridium difficile infection (CDI) has been well documented, the role of other putative microbial etiologies (Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida species) and their pathogenic mechanisms in AAD has been unclear. This review provides a comprehensive and systematic approach to the existing data on AAD and includes concise descriptions of the pathogenesis of CDI and non-CDI AAD in the form of figures.^