941 resultados para Closed-loop Control
Resumo:
Study design: Cross-sectional study. Objectives: To assess the importance of proprioceptive and vision information on different types of wheelchair seats with regard to postural control in paraplegic individuals during static posture. Setting: Centre of Rehabilitation at the University Hospital/FMRP-USP and Rehabilitation Outpatient Clinic at University Hospital/UNICAMP, Brazil. Methods: This study involved 11 individuals with paraplegia. All individuals were submitted to an evaluation of static balance with their eyes open and closed in three different types of seats: wheelchair seat, foam seat and gel seat. Balance evaluation was performed by using the Polhemus system, in which body displacements and anteroposterior and mediolateral speeds were assessed in a static seated position in the different types of seats. Data were analyzed using analysis of variance. The differences were considered at P<0.05. Results: No statistical differences were found between the three types of seats in terms of displacements and anteroposterior and mediolateral speeds, or between seats with individuals keeping their eyes open or closed (P>0.05). However, it was observed that body displacements were more prominent toward an anteroposterior than a mediolateral direction. Conclusion: This study suggests that individuals with paraplegia tend to exhibit a more anteroposterior body displacement than a mediolateral one, with no significant differences between the types of seats in both situations of eyes open and closed. Spinal Cord (2010) 48, 825-827; doi:10.1038/sc.2010.30; published online 30 March 2010
Resumo:
Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.
Resumo:
Purpose: For treatment of various knee disorders, muscles are trained in open or closed kinetic chain tasks. Coordination between the heads of the quadriceps muscle is important for stability and optimal joint loading for both the tibiofemoral and the patellofemoral joint. The aim of this study was to examine whether the quadriceps femoris muscles are activated differently in open versus closed kinetic chain tasks. Methods: Ten healthy men and women (mean age 28.5 +/- 0.7) extended the knees isometrically in open and closed kinetic chain tasks in a reaction time paradigm using moderate force. Surface electromyography (EMG) recordings were made from four different parts of the quadriceps muscle. The onset and amplitude of EMG and force data were measured. Results: In closed chain knee extension, the onset of EMG activity of the four different muscle portions of the quadriceps was more simultaneous than in the open chain. In open chain, rectus femoris (RF) had the earliest EMG onset while vastus medialis obliquus was activated last (7 +/- 13 ms after RF EMG onset) and with smaller amplitude (40 +/- 30% of maximal voluntary contraction (MVC)) than in closed chain (46 +/- 43% MVC). Conclusions: Exercise in closed kinetic chain promotes more balanced initial quadriceps activation than does exercise in open kinetic chain. This may be of importance in designing training programs aimed toward control of the patellofemoral joint.
Resumo:
This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
Resumo:
A thesis submitted for the degree of Doctor of Philosophy
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA
Resumo:
The objective of this contribution is to extend the models of cellular/composite material design to nonlinear material behaviour and apply them for design of materials for passive vibration control. As a first step a computational tool allowing determination of optimised one-dimensional isolator behaviour was developed. This model can serve as a representation for idealised macroscopic behaviour. Optimal isolator behaviour to a given set of loads is obtained by generic probabilistic metaalgorithm, simulated annealing. Cost functional involves minimization of maximum response amplitude in a set of predefined time intervals and maximization of total energy absorbed in the first loop. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Obtained results facilitate the design of elastomeric cellular materials with improved behaviour in terms of dynamic stiffness for passive vibration control.
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Doutor em Engenharia Civil
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
En este proyecto se ha desarrollado estrategias de control avanzadas para plantas de depuración de aguas residuales urbanas que eliminan conjuntamente materia orgánica, nitrógeno y fósforo. Las estrategias se han basado en el estudio multivariable del comportamiento del sistema, que ha producido subsidios para la utilización de lazos de control feedforward, de control predictivo y de un control de costes que automáticamente enviaba las consignas más adecuadas para los controladores de proceso. Para el desarrollo de las estrategias, se ha creado un sistema virtual de simulación (simulador) de plantas de depuradoras, basado en datos de literatura. Para el caso de una planta real, se ha desarrollado un simulador de la planta de Manresa (Catalunya). Sin embargo, el sistema de Manresa se ha utilizado exclusivamente para auxiliar los ingenieros de la planta en la tomada de decisiones de cambio de configuración para que la eliminación de fósforo se dé por la ruta biológica y no por la ruta química. La implementación de los simuladores ha permitido hacer muchas pruebas que en una planta real demandarían mucho tiempo y consumirían muchos recursos energéticos y financieros. Las estrategias de control más elaboradas han podido ahorrar hasta 150.000,00 Euros por año en relación a la operación de la planta sin el control automático. Cuanto a los estudios del modelo de la planta real, se concluyó que la eliminación biológica de fósforo puede sustituir el actual proceso químico de eliminación de fósforo, bajando los costes operacionales (costes del agente precipitante).
Resumo:
In this paper we present a prototype of a control flow for an a posteriori drug dose adaptation for Chronic Myelogenous Leukemia (CML) patients. The control flow is modeled using Timed Automata extended with Tasks (TAT) model. The feedback loop of the control flow includes the decision-making process for drug dose adaptation. This is based on the outputs of the body response model represented by the Support Vector Machine (SVM) algorithm for drug concentration prediction. The decision is further checked for conformity with the dose level rules of a medical guideline. We also have developed an automatic code synthesizer for the icycom platform as an extension of the TIMES tool.
Resumo:
Cell elongation during seedling development is antagonistically regulated by light and gibberellins (GAs). Light induces photomorphogenesis, leading to inhibition of hypocotyl growth, whereas GAs promote etiolated growth, characterized by increased hypocotyl elongation. The mechanism underlying this antagonistic interaction remains unclear. Here we report on the central role of the Arabidopsis thaliana nuclear transcription factor PIF4 (encoded by PHYTOCHROME INTERACTING FACTOR 4) in the positive control of genes mediating cell elongation and show that this factor is negatively regulated by the light photoreceptor phyB (ref. 4) and by DELLA proteins that have a key repressor function in GA signalling. Our results demonstrate that PIF4 is destabilized by phyB in the light and that DELLAs block PIF4 transcriptional activity by binding the DNA-recognition domain of this factor. We show that GAs abrogate such repression by promoting DELLA destabilization, and therefore cause a concomitant accumulation of free PIF4 in the nucleus. Consistent with this model, intermediate hypocotyl lengths were observed in transgenic plants over-accumulating both DELLAs and PIF4. Destabilization of this factor by phyB, together with its inactivation by DELLAs, constitutes a protein interaction framework that explains how plants integrate both light and GA signals to optimize growth and development in response to changing environments.
Resumo:
BACKGROUND: We examined body image perception and its association with reported weight-control behavior among adolescents in the Seychelles.METHODS: We conducted a school-based survey of 1432 students aging 11-17 years in the Seychelles. Perception of body image was assessed using both a closed-ended question (CEQ) and Stunkard's pictorial silhouettes (SPS). Voluntary attempts to change weight were also assessed.RESULTS: A substantial proportion of the overweight students did not consider themselves as overweight (SPS: 24%, CEQ: 34%), and a substantial proportion of the normal-weight students considered themselves as too thin (SPS: 29%, CEQ: 15%). Logistic regression analysis showed that students with an accurate weight perception were more likely to have appropriate weight-control behavior.CONCLUSIONS: We found that substantial proportions of students had an inaccurate perception of their weight and that weight perception was associated with weight-control behavior. These findings point to forces that can drive the upwards overweight trends.