883 resultados para Climate monitoring and alerting
Resumo:
The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.
Resumo:
Climate change as a global problem has moved relatively swiftly into high profile political debates over the last 20 years or so, with a concomitant diffusion from the natural sciences into the social sciences. The study of the human dimensions of climate change has been growing in momentum through research which attempts to describe, evaluate, quantify and model perceptions of climate change, understand more about risk and assess the construction of policy. Cultural geographers’ concerns with the construction of knowledge, the workings of social relations in space and the politics and poetics of place-based identities provide a lens through which personal, collective and institutional responses to climate change can be evaluated using critical and interpretative methodologies. Adopting a cultural geography approach, this paper examines how climate change as a particular environmental discourse is constructed through memory, observation and conversation, as well as materialised in farming practices on the Lizard Peninsula, Cornwall, UK
Resumo:
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.
Resumo:
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
This article draws on ongoing research in the Maldives to explore differences between elite and non-elite perceptions of climate change and migration. It argues that, in addition to variations in perceptions based on diverse knowledge, priorities and agendas, there exists a more fundamental divergence based upon different understandings of the time-scale of climate change and related ideas of urgency and crisis. Specifically, elites tend to focus on a distant future which is generally abstracted from people’s everyday lived realities, as well as utilise the language of a climate change-induced migration ‘crisis’ in their discussions about impacts in a manner not envisaged by non-elites. The article concludes that, rather than unproblematically mapping global, external facing narratives wholesale onto ordinary people’s lives and experiences, there needs to be more dialogue between elites and non-elites on climate change and migration issues. These perspectives should be integrated more effectively in the development of policy interventions designed to help people adapt to the impacts of global environmental change.
Resumo:
At present, there is a clarion call for action on climate change across the global health landscape. At the recent WHO-sponsored conference on health and climate (held in Geneva, Switzerland, on Aug 27–29, 2014) and the UN Climate Summit (New York, USA, on Sept 23, 2014), participants were encouraged to act decisively to change the current trajectory of climate disruption. Health inequalities, including those related to infectious diseases, have now been pushed to centre stage. This approach represents a step-change in thinking. But as we are urged toward collective action, is it time to rethink our approach to research, especially in relation to climate change and infectious disease?
Resumo:
In this study, observed changes of temperature, rainfall, and some extreme climate indices in Vietnam were investigated by using daily observations during the period 1961-2012. The observed data were collected from 80 meteorological stations for temperature, and from 170 stations for rainfall over the seven climatological sub-regions of Vietnam. Results show that there were insignificant differences between the trends of changes obtained from the 1961-2011 and 1979-2012 periods. Near-surface temperature, including mean (T2m), maximum (Tx) and minimum temperature (Tm), increased consistently at almost all stations. Tm increased faster than Tx. Temperature also increased faster in winter than in summer. Consequently, the number of hot days and warm nights increased whereas the number of cold days, cold nights and cool days decreased. In the northern regions, temperature tended to slightly decrease in May but significantly increased in June. Annual rainfall decreased in the northern area of Vietnam, while it increased at almost all stations in the central regions, and had insignificant trends in the southern sub-region. Changes in some extreme rainfall indices were likely consistent with changes in annual rainfall. Monthly rainfall in the central regions significantly increased from August to December. Rainfall generally increased in May and decreased in June over almost all country.