857 resultados para Classification (of information)
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
This paper examines the occurrence and fragility of information cascades in two laboratory experiments. One group of low informed participants sequentially guess which of two states has been randomly chosen. In a matched pairs design, another group of high informed participants make similar guesses after having observed the guesses of the low informed participants. In the second experiment, participants' beliefs about the chosen state are elicited. In equilibrium, low informed players who observe an established pattern of identical guesses herd without regard to their private information whereas high informed players always guess according to their private information. Equilibrium behavior implies that information cascades emerge in the group of low informed participants, the belief based solely on cascade guesses is stationary, and information cascades are systematically broken by high informed participants endowed with private information contradicting the cascade guesses. Experimental results show that the behavior of low informed participants is qualitatively in line with the equilibrium prediction. Information cascades often emerge in our experiments. The tendency of low informed participants to engage in cascade behavior increases with the number of identical guesses. Our main finding is that information cascades are not fragile. The behavior of high informed participants differs markedly from the equilibrium prediction. Only one-third of laboratory cascades are broken by high informed participants endowed with private information contradicting the cascade guesses. The relative frequency of cascade breaks is 15% for the situations where five or more identical guesses are observed. Participants' elicited beliefs are strongly consistent with their own behavior and show that, unlike in equilibrium, the more cascade guesses participants observe the more they believe in the state favored by those guesses.
Resumo:
The present study aimed to investigate the presence of corpus callosum (CC) volume deficits in a population-based recent-onset psychosis (ROP) sample, and whether CC volume relates to interhemispheric communication deficits. For this purpose, we used voxel-based morphometry comparisons of magnetic resonance imaging data between ROP (n = 122) and healthy control (n = 94) subjects. Subgroups (38 ROP and 39 controls) were investigated for correlations between CC volumes and performance on the Crossed Finger Localization Test (CFLT). Significant CC volume reductions in ROP subjects versus controls emerged after excluding substance misuse and non-right-handedness. CC reductions retained significance in the schizophrenia subgroup but not in affective psychoses subjects. There were significant positive correlations between CC volumes and CFLT scores in ROP subjects, specifically in subtasks involving interhemispheric communication. From these results, we can conclude that CC volume reductions are present in association with ROP. The relationship between such deficits and CFLT performance suggests that interhemispheric communication impairments are directly linked to CC abnormalities in ROP. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
PURPOSE. To describe and classify patterns of abnormal fundus autofluorescence (FAF) in eyes with early nonexudative age-related macular disease (AMD). METHODS. FAF images were recorded in eyes with early AMD by confocal scanning laser ophthalmoscopy (cSLO) with excitation at 488 nm (argon or OPSL laser) and emission above 500 or 521 nm (barrier filter). A standardized protocol for image acquisition and generation of mean images after automated alignment was applied, and routine fundus photographs were obtained. FAF images were classified by two independent observers. The ? statistic was applied to assess intra- and interobserver variability. RESULTS. Alterations in FAF were classified into eight phenotypic patterns including normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Areas with abnormal increased or decreased FAF signals may or may not have corresponded to funduscopically visible alterations. For intraobserver variability, ? of observer I was 0.80 (95% confidence interval [CI]0.71-0.89) and of observer II, 0.74. (95% CI, 0.64-0.84). For interobserver variability, ? was 0.77 (95% CI, 0.67-0.87). CONCLUSIONS. Various phenotypic patterns of abnormal FAF can be identified with cSLO imaging. Distinct patterns may reflect heterogeneity at a cellular and molecular level in contrast to a nonspecific aging process. The results indicate that the classification system yields a relatively high degree of intra- and interobserver agreement. It may be applicable for determination of novel prognostic determinants in longitudinal natural history studies, for identification of genetic risk factors, and for monitoring of future therapeutic interventions to slow the progression of early AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Automatically determining and assigning shared and meaningful text labels to data extracted from an e-Commerce web page is a challenging problem. An e-Commerce web page can display a list of data records, each of which can contain a combination of data items (e.g. product name and price) and explicit labels, which describe some of these data items. Recent advances in extraction techniques have made it much easier to precisely extract individual data items and labels from a web page, however, there are two open problems: 1. assigning an explicit label to a data item, and 2. determining labels for the remaining data items. Furthermore, improvements in the availability and coverage of vocabularies, especially in the context of e-Commerce web sites, means that we now have access to a bank of relevant, meaningful and shared labels which can be assigned to extracted data items. However, there is a need for a technique which will take as input a set of extracted data items and assign automatically to them the most relevant and meaningful labels from a shared vocabulary. We observe that the Information Extraction (IE) community has developed a great number of techniques which solve problems similar to our own. In this work-in-progress paper we propose our intention to theoretically and experimentally evaluate different IE techniques to ascertain which is most suitable to solve this problem.