651 resultados para Chumbo - Solubilidade
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Demand for potassium in Brazil is large and is constantly increasing, but only about 5% of all consumed potassium is produced in the country. This low domestic production implies high rate of potassium imports, leaving the country vulnerable in the event of any difficulty to import this product and currency fluctuations. The modified glauconite is a rock that has a high potential for potassium exploration, found in Minas Gerais state, its extraction is relatively cheap and the prospected rock volume is high. The difficulty for its use as a direct source of potassium is in its low solubility. Thus, the objective of this study was to perform a chemical and mineralogical characterization of the modified glauconite and evaluate the effectiveness of techniques and treatments in the potassium solubilization contained in the rock. For this study, it was used characterization techniques such as X-ray diffraction, scanning electron microscopy, diffraction by Synchrotron Light and chemical analysis of high and low power of potassium extraction. Also granulometric testing and thermal treatments with different forms of calcination were carried out. Overall, it was found that the modified glauconite is a compound of minerals, of the mica groups K-feldspar and quartz and calcination substantially alter the crystal structure of these minerals, increasing the potassium availability. While the natural solubility of glauconite modified be very low, rock calcination added with high fluxes of calcium and low magnesium content at 1200 °C led to potassium solubility increase in order of 100 times compared to that observed in the glauconite natural modified.
Resumo:
This study was to evaluate the solubility of nepheline syenite rocks and glauconite as alternative sources of K by organic humic acid arrays, citrus and coffee pods at various times from 0 to 180 days of incubation. The experiment was conducted in the fertility laboratory in the Department of Soil Science at the Federal University of Lavras in a completely randomized design with 90 treatments and 3 replications. The treatments were arranged in a factorial arrangement (2 x 3 x 7 + 3), 2 nepheline syenite rocks and glauconite incubated with water and 3 matrix organic humic acid, citric acid and coffee husk in six different incubation times of 0, 7, 15, 30, 75, 120 and 180 days, incubation were performed with the three above-mentioned organic matrix in increasing doses of 0, 1, 2, 5 and 10% humic acids and citric 0, 5, 10 20 and 40% for coffee husk. We evaluated the K2O content by different extractants soluble in 2% citric acid and water all treatments at all incubation times quoted above. Incubation and the application of organic matrix rocks nepheline syenite and generally glauconite provided a significant increase in solubility of K of the rocks studied in this work. Among the organic matrix has been observed that the coffee husk which provided the greatest release of K2O in both rocks mainly into the extractor 2% citric acid showed that the most efficient extraction K2O in all treatments.
Resumo:
The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L - 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L - 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.
Resumo:
A simple procedure for recovering potassium dichromate (K2Cr2O7 ) from treatment of residual sulphochromic solution was proposed in the present work by means of cooling crystallization. The decrease of temperature favored the crystallization of K2Cr2O7 due to the decrease of solubility. 5.0 L of sulphochromic wastes containing 48.08 g L-1 of Cr(VI) were treated and the process of crystallization was performed in three steps until crystals were not formed anymore. On each step the content of Crtotal was determined by flame atomic absorption spectrometry and Cr(VI) by colorimetric method with 1,5- diphenylcarbazide, resulting in the removal of 91% and 92% of Crtotal and Cr(VI), respectively. After the last step, the remaining Cr(VI) in the solution was reduced to Cr(III) from the addition of NaHSO3 , recovering via precipitation in pH 8 approximately 36.13 g of Cr(OH)3 . The final supernatant was discarded since chromium content was below the maximum limit established by the Brazilian legislation for effluents discharge, which corresponds to 0.10 and 1.0 mg L-1 of Cr(VI) and Cr(III), respectively. 628.4 g of K2Cr2O7 were recovered and the salt was characterized by X-ray diffraction and differential thermal analysis. Its applicability was compared to the standard K2Cr2O7 when determining the soil organic matter, in which there was no significant difference, thus inferring that the recovered compound may be incorporated on routine analyses. This recovering process allowed the reuse of K2Cr2O7 , thus reducing costs with the acquisition of new reagents and environmental impacts caused by the inadequate discard of sulphochromic solutions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)