734 resultados para CRASSOSTREA GIGAS
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.
Resumo:
Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (400 µatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.
Resumo:
Com um quinto da água doce do planeta, o sistema fluvial da Amazônia apresenta um enorme potencial para piscicultura. De acordo com a FAO, em função das suas condições geográficas, o Brasil é um dos poucos países que tem condições de atender à crescente demanda mundial, podendo tornar-se um dos maiores produtores de peixes do mundo. A observação desse potencial amazônico motivou o desenvolvimento desta pesquisa que se debruça sobre a questão da competitividade da cadeia produtiva de Arapaima gigas, o pirarucu da Amazônia brasileira. As pesquisas de campo levaram ao mapeamento de duas cadeias: a cadeia extrativista e a piscicultura. A abordagem sistêmica permitiu a verificação das características dos atores e as bases sob as quais as transações se estabelecem. À luz da teoria das restrições foram identificados os gargalos que impedem a competitividade do sistema, inclusive alertando para os recursos com restrição de capacidade. Comprovou-se que a falta de uma cadeia produtiva devidamente organizada pode provocar graves prejuízos a determinados elos, enquanto outros membros aproveitam-se de ações oportunistas para ampliar suas margens de lucro. Da mesma forma, a ausência de uma cadeia produtiva completa impede a fixação do valor gerado na região de origem das matérias-primas. No entanto, também foi possível comprovar que há possibilidade de desenvolver o extrativismo atribuindo valor econômico aos recursos naturais e gerando renda para a comunidade local. Além de apresentar o panorama do setor na região delimitada, este estudo culminou em reflexões capazes de orientar políticas públicas para o desenvolvimento de cadeias produtivas completas na região da Amazônia brasileira.
Resumo:
La investigación se efectuó con información de la pesquería del calamar gigante proveniente de la flota industrial-artesanal, cruceros de investigación nacional e internacional, así como de organismos públicos y privados tanto nacionales como del extranjero. El objetivo fue estudiar las principales características biológico-pesqueras del calamar gigante, asimismo se analizaron los parámetros sociales, económicos e institucionales de la pesquería del recurso, con la finalidad de evaluar la sostenibilidad de su pesquería, proponiendo los indicadores más convenientes para describir la situación y las tendencias de las distintas dimensiones del desarrollo sostenible, en tal sentido se concluyó que la pesquería del calamar gigante sí cumple los parámetros internacionales de sostenibilidad, faltando sólo una mayor participación (ganancias económicas) por parte de los pescadores artesanales.
Resumo:
This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (C-i) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.
Resumo:
The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.
Resumo:
The Comprehensive Everglades Restoration Plan (CERP) attempts to restore hydrology in the Northern and Southern Estuaries of Florida. Reefs of the Eastern oyster Crassostrea virginica are a dominant feature of the estuaries along the Southwest Florida coast. Oysters are benthic, sessile, filter-feeding organisms that provide ecosystem services by filtering the water column and providing food, shelter and habitat for associated organisms. As such, the species is an excellent sentinel organism for examining the impacts of restoration on estuarine ecosystems. The implementation of CERP attempts to improve: the hydrology and spatial and structural characteristics of oyster reefs, the recruitment and survivorship of C. virginica, and the reef-associated communities of organisms. This project links biological responses and environmental conditions relative to hydrological changes as a means of assessing positive or negative trends in oyster responses and population trends. Using oyster responses, we have developed a communication tool (i.e., Stoplight Report Card) based on CERP performance measures that can distinguish between responses to restoration and natural patterns. The Stoplight Report Card system is a communication tool that uses Monitoring and Assessment Program (MAP) performance measures to grade an estuary's response to changes brought about by anthropogenic input or restoration activities. The Stoplight Report Card consists of both a suitability index score for each organism metric as well as a trend score (− decreasing trend, +/− no change in trend, and + increasing trend). Based on these two measures, a component score (e.g., living density) is calculated by averaging the suitability index score and the trend score. The final index score is obtained by taking the geometric score of each component, which is then translated into a stoplight color for success (green), caution (yellow), or failure (red). Based on the data available for oyster populations and the responses of oysters in the Caloosahatchee Estuary, the system is currently at stage “caution.” This communication tool instantly conveys the status of the indicator and the suitability, while trend curves provide information on progress towards reaching a target. Furthermore, the tool has the advantage of being able to be applied regionally, by species, and collectively, in concert with other species, system-wide.
Resumo:
The malacocultura, particularly oyster farming, appears on the world stage as one of the most viable alternatives to fishing decline and supply of fresh product. In Brazil, the development of mollusc cultivationis through the genus oyster cultivation Crassostrea, among them Crassostrea rhizophorae (Guilding, 1828), known for oyster-the-swamp, one of the main species of farmed bivalves in the state of Pará. This so it aimed to characterize the biomorphometrics relations, estimate the Shape Stabilization Index (IEF) of the shell and the yield of edible meat C. rhizophorae grown in an Amazonian coast, state of Pará, northern Brazil. When all is sampled 1,028 individuals, in April 2016, measuring the external morphometric measures (length, width and height) and total and visceral biomass. The results obtained are C. rhizophorae with (1) excellent biomorphometrics relationships among both external measures, the measures of the shell and biomass generating equations that satisfy morphometric pet species, (2) yield of edible meat 15% of the total biomass and variation in the shell along its development to adulthood, with a tendency to stabilize the reach 60mm in length.
Resumo:
We present experiments that examined the metamorphosis, growth, and survivorship of larvae from three species of commercially and ecologically valuable shellfish (Mercenaria mercenaria, Argopecten irradians, and Crassostrea virginica) at the levels of CO2 projected to occur during the 21st century and beyond. Under CO2 concentrations estimated to occur later this century (~66 Pa, 650 ppm), M. mercenaria and A. irradians larvae exhibited dramatic declines (>50%) in survivorship as well as significantly delayed metamorphosis and significantly smaller sizes. Although C. virginica larvae also experienced lowered growth and delayed metamorphosis at ~66 Pa CO2, their survival was only diminished at ~152 Pa CO2. The extreme sensitivity of larval stages of shellfish to enhanced levels of CO2 indicates that current and future increases in pelagic CO2 concentrations may deplete or alter the composition of shellfish populations in coastal ecosystems.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ~0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.