927 resultados para COMPUTATIONAL DOCKING
Resumo:
Using a combined computational program. we identified 50 potential microRNAs (miRNAs) in Giardia lamblia. one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs.
Resumo:
In order to generate skilled and efficient actions, the motor system must find solutions to several problems inherent in sensorimotor control, including nonlinearity, nonstationarity, delays, redundancy, uncertainty, and noise. We review these problems and five computational mechanisms that the brain may use to limit their deleterious effects: optimal feedback control, impedance control, predictive control, Bayesian decision theory, and sensorimotor learning. Together, these computational mechanisms allow skilled and fluent sensorimotor behavior.
Resumo:
This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.