964 resultados para CHEMORECEPTOR INPUTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Exercise referral schemes (ERS) aim to identify inactive adults in the primary care setting. The primary care professional refers the patient to a third party service, with this service taking responsibility for prescribing and monitoring an exercise programme tailored to the needs of the patient. This paper examines the cost-effectiveness of ERS in promoting physical activity compared with usual care in primary care setting. Methods A decision analytic model was developed to estimate the cost-effectiveness of ERS from a UK NHS perspective. The costs and outcomes of ERS were modelled over the patient's lifetime. Data were derived from a systematic review of the literature on the clinical and cost-effectiveness of ERS, and on parameter inputs in the modelling framework. Outcomes were expressed as incremental cost per quality-adjusted life-year (QALY). Deterministic and probabilistic sensitivity analyses investigated the impact of varying ERS cost and effectiveness assumptions. Sub-group analyses explored the cost-effectiveness of ERS in sedentary people with an underlying condition. Results Compared with usual care, the mean incremental lifetime cost per patient for ERS was £169 and the mean incremental QALY was 0.008, generating a base-case incremental cost-effectiveness ratio (ICER) for ERS at £20,876 per QALY in sedentary individuals without a diagnosed medical condition. There was a 51% probability that ERS was cost-effective at £20,000 per QALY and 88% probability that ERS was cost-effective at £30,000 per QALY. In sub-group analyses, cost per QALY for ERS in sedentary obese individuals was £14,618, and in sedentary hypertensives and sedentary individuals with depression the estimated cost per QALY was £12,834 and £8,414 respectively. Incremental lifetime costs and benefits associated with ERS were small, reflecting the preventative public health context of the intervention, with this resulting in estimates of cost-effectiveness that are sensitive to variations in the relative risk of becoming physically active and cost of ERS. Conclusions ERS is associated with modest increase in lifetime costs and benefits. The cost-effectiveness of ERS is highly sensitive to small changes in the effectiveness and cost of ERS and is subject to some significant uncertainty mainly due to limitations in the clinical effectiveness evidence base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using the four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rectangular universal cellular array consisting of cells having three inputs and one output is described. This array is based on the Reed-Muller canonical expansion of a switching function. Although the total number of external input pins required in this array is the same as that of a rectangular array proposed in the literature, the number of cells is very much less.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shelf life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots (SER) ( Fusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicides either as field spray treatments or as postharvest dips. These have done a fairly good job at serving the industry and allowing fruits to be transported, stored and sold at markets distant from the areas of production. There are however concerns on the continuous use of these fungicides as the main or only tool for the management of these diseases. This has necessitated a re-think of how these diseases could be sustainably managed into the future using a systems approach that focuses on integrated crop management. It is a holistic approach that considers all the crop protection management strategies including the genetics of the plant and its ability to naturally defend itself from infection with plant activators and growth regulators. It also considers other cultural or agronomic management tools such as the use of crop nutrition, timely application of irrigation water and the pruning of trees on a regular basis as a means of reducing inoculum levels in the orchards. The ultimate aim of this approach is to increase yields and obtain long term sustainable production. It is guided by the sustainable crop production principle which states that producers should apply as little inputs as possible but as much as needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high proportion of the Australian and New Zealand dairy industry is based on a relatively simple, low input and low cost pasture feedbase. These factors enable this type of production system to remain internationally competitive. However, a key limitation of pasture-based dairy systems is periodic imbalances between herd intake requirements and pasture DM production, caused by strong seasonality and high inter-annual variation in feed supply. This disparity can be moderated to a certain degree through the strategic management of the herd through altering calving dates and stocking rates, and the feedbase by conserving excess forage and irrigating to flatten seasonal forage availability. Australasian dairy systems are experiencing emerging market and environmental challenges, which includes increased competition for land and water resources, decreasing terms of trade, a changing and variable climate, an increasing environmental focus that requires improved nutrient and water-use efficiency and lower greenhouse gas emissions. The integration of complementary forages has long been viewed as a means to manipulate the home-grown feed supply, to improve the nutritive value and DM intake of the diet, and to increase the efficiency of inputs utilised. Only recently has integrating complementary forages at the whole-farm system level received the significant attention and investment required to examine their potential benefit. Recent whole-of-farm research undertaken in both Australia and New Zealand has highlighted the importance of understanding the challenges of the current feedbase and the level of complementarity between forage types required to improve profit, manage risk and/or alleviate/mitigate against adverse outcomes. This paper reviews the most recent systems-level research into complementary forages, discusses approaches to modelling their integration at the whole-farm level and highlights the potential of complementary forages to address the major challenges currently facing pasture-based dairy systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mikania micrantha (Asteraceae) commonly known as mikania, is a major invasive alien plant (IAP) in the tropical humid agricultural and forest zones of the Asia-Pacific region. This fast-growing Neotropical vine is able to smother plants in agricultural ecosystems, agroforestry and natural habitats, reducing productivity and biodiversity. Fungal pathogens were first investigated for the classical biological control of this weed in 1996. This resulted in the selection and screening of the highly host-specific and damaging rust pathogen, Puccinia spegazzinii (Pucciniales). It was first released in India and China in 2005/6, although it is not believed to have established. Since then, it has been released successfully in Taiwan, Papua New Guinea (PNG), Fiji and most recently Vanuatu. The rust has established and is spreading rapidly after applying lessons learned from the first releases on the best rust pathotype and release strategy. In PNG, direct monitoring of vegetation change has demonstrated that the rust is having a significant impact on M. micrantha, with no unpredicted non-target impacts. Despite this, the authorities in many countries where mikania is a problem remain cautious about releasing the rust. In Western Samoa, introduction of the rust was not pursued because of a conflict of interest, and the perception that mikania suppresses even worse weeds. For some, ‘pathophobia’ is still a major obstacle. In Indonesia, where insects for weed CBC have been introduced, pathogens will currently not be considered. In other countries such as Bhutan and Myanmar, there are no baseline data on the presence and impact of IAPs and, with no history of CBC, no institutional framework for implementing this approach. Malaysia has a well-developed framework, but capacity needs to be built in the country. Overall, it remains critical to have champions at decision making levels. Hence, even with an effective ‘off-the-shelf’ agent available, implementation of mikania CBC still requires significant inputs tailored to the countries’ specific needs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative sources of N are required to bolster subtropical cereal production without increasing N2O emissions from these agro-ecosystems. The reintroduction of legumes in cereal cropping systems is a possible strategy to reduce synthetic N inputs but elevated N2O losses have sometimes been observed after the incorporation of legume residues. However, the magnitude of these losses is highly dependent on local conditions and very little data are available for subtropical regions. The aim of this study was to assess whether, under subtropical conditions, the N mineralised from legume residues can substantially decrease the synthetic N input required by the subsequent cereal crop and reduce overall N2O emissions during the cereal cropping phase. Using a fully automated measuring system, N2O emissions were monitored in a cereal crop (sorghum) following a legume pasture and compared to the same crop in rotation with a grass pasture. Each crop rotation included a nil and a fertilised treatment to assess the N availability of the residues. The incorporation of legumes provided enough readily available N to effectively support crop development but the low labile C left by these residues is likely to have limited denitrification and therefore N2O emissions. As a result, N2O emissions intensities (kgN2O-N yield-1ha-1) were considerably lower in the legume histories than in the grass. Overall, these findings indicate that the C supplied by the crop residue can be more important than the soil NO3 - content in stimulating denitrification and that introducing a legume pasture in a subtropical cereal cropping system is a sustainable practice from both environmental and agronomic perspectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing requirement for more astute land resource management through efficiencies in agricultural inputs in a sugar cane production system. A precision agriculture (PA) approach can provide a pathway for a sustainable sugarcane production system. One of the impediments to the adoption of PA practices is access to paddock-scale mapping layers displaying variability in soil properties, crop growth and surface drainage. Variable rate application (VRA) of nutrients is an important component of PA. However, agronomic expertise within PA systems has fallen well behind significant advances in PA technologies. Generally, advisers in the sugar industry have a poor comprehension of the complex interaction of variables that contribute to within-paddock variations in crop growth. This is regarded as a significant impediment to the progression of PA in sugarcane and is one of the reasons for the poor adoption of VRA of nutrients in a PA approach to improved sugar cane production. This project therefore has established a number of key objectives which will contribute to the adoption of PA and the staged progression of VRA supported by relevant and practical agronomic expertise. These objectives include provision of base soils attribute mapping that can be determined using Veris 3100 Electrical Conductivity (EC) and digital elevation datasets using GPS mapping technology for a large sector of the central cane growing region using analysis of archived satellite imagery to determine the location and stability of yield patterns over time and in varying seasonal conditions on selected project study sites. They also include the stablishment of experiments to determine appropriate VRA nitrogen rates on various soil types subjected to extended anaerobic conditions, and the establishment of trials to determine nitrogen rates applicable to a declining yield potential associated with the aging of ratoons in the crop cycle. Preliminary analysis of archived yield estimation data indicates that yield patterns remain relatively stable overtime. Results also indicate the where there is considerable variability in EC values there is also significant variation in yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of no-tillage (NT) farming has revolutionized agricultural systems by allowing growers to manage greater areas of land with reduced energy, labour and machinery inputs to control erosion, improve soil health and reduce greenhouse gas emission. However, NT farming systems have resulted in a build-up of herbicide-resistant weeds, an increased incidence of soil- and stubble-borne diseases and enrichment of nutrients and carbon near the soil surface. Consequently, there is an increased interest in the use of an occasional tillage (termed strategic tillage, ST) to address such emerging constraints in otherwise-NT farming systems. Decisions around ST uses will depend upon the specific issues present on the individual field or farm, and profitability and effectiveness of available options for management. This paper explores some of the issues with the implementation of ST in NT farming systems. The impact of contrasting soil properties, the timing of the tillage and the prevailing climate exert a strong influence on the success of ST. Decisions around timing of tillage are very complex and depend on the interactions between soil water content and the purpose for which the ST is intended. The soil needs to be at the right water content before executing any tillage, while the objective of the ST will influence the frequency and type of tillage implement used. The use of ST in long-term NT systems will depend on factors associated with system costs and profitability, soil health and environmental impacts. For many farmers maintaining farm profitability is a priority, so economic considerations are likely to be a primary factor dictating adoption. However, impacts on soil health and environment, especially the risk of erosion and the loss of soil carbon, will also influence a grower’s choice to adopt ST, as will the impact on soil moisture reserves in rainfed cropping systems.