944 resultados para CHARGE CONTROL MODEL
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
Linear theory, model ion-density profiles and MSIS neutral thermospheric predictions are used to investigate the stability of the auroral, topside ionosphere to oxygen cyclotron waves: variations of the critical height, above which the plasma is unstable, with field-aligned current, thermal ion density and exospheric temperature are considered. In addition, probabilities are assessed that interactions with neutral atomic gases prevent O+ ions from escaping into the magnetosphere after they have been transversely accelerated by these waves. The two studies are combined to give a rough estimate of the total O+ escape flux as a function of the field-aligned current density for an assumed rise in the perpendicular ion temperature. Charge exchange with neutral oxygen, not hydrogen, is shown to be the principle limitation to the escape of O+ ions, which occurs when the waves are driven unstable down to low altitudes. It is found that the largest observed field-aligned current densities can heat a maximum of about 5×1014 O+ ions m−2 to a threshold above which they are subsequently able to escape into the magnetosphere in the following 500s. Averaged over this period, this would constitute a flux of 1012 m−2 s−1 and in steady-state the peak outflow would then be limited to about 1013 m−2 s−1 by frictional drag on thermal O+ at lower altitudes. Maximum escape is at low plasma density unless the O+ scale height is very large. The outflow decreases with decreasing field-aligned current density and, to a lesser extent, with increasing exospheric temperature. Upward flowing ion events are evaluated as a source of O+ ions for the magnetosphere and as an explanation of the observed solar cycle variation of ring current O+ abundance.
Resumo:
The present study investigated the effects of exercise training on arterial pressure, baroreflex sensitivity, cardiovascular autonomic control and metabolic parameters on female LDL-receptor knockout ovariectomized mice. Mice were divided into two groups: sedentary and trained. Trained group was submitted to an exercise training protocol. Blood cholesterol was measured. Arterial pressure (AP) signals were directly recorded in conscious mice. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses to AP changes. Cardiovascular autonomic modulation was measured in frequency (FFT) and time domains. Maximal exercise capacity was increased in trained as compared to sedentary group. Blood cholesterol was diminished in trained mice (191 +/- 8 mg/dL) when compared to sedentary mice (250 +/- 9 mg/dL, p<0.05). Mean AP and HR were reduced in trained group (101 +/- 3 mmHg and 535 +/- 14 bpm, p<0.05) when compared with sedentary group (125 +/- 3 mmHg and 600 +/- 12 bpm). Exercise training induced improvement in bradycardic reflex response in trained animals (-4.24 +/- 0.62 bpm/mmHg) in relation to sedentary animals (-1.49 +/- 0.15 bpm/mmHg, p<0.01); tachycardic reflex responses were similar between studied groups. Exercise training increased the variance (34 +/- 8 vs. 6.6 +/- 1.5 ms(2) in sedentary, p<0.005) and the high-frequency band (HF) of the pulse interval (IP) (53 +/- 7% vs. 26 +/- 6% in sedentary, p<0.01). It is tempting to speculate that results of this experimental study might represent a rationale for this non-pharmacological intervention in the management of cardiovascular risk factors in dyslipidemic post-menopause women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this paper we study the Lyapunov stability and Hopf bifurcation in a biological system which models the biological control of parasites of orange plantations. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Model Predictive Control (MPC) is a control method that solves in real time an optimal control problem over a finite horizon. The finiteness of the horizon is both the reason of MPC's success and its main limitation. In operational water resources management, MPC has been in fact successfully employed for controlling systems with a relatively short memory, such as canals, where the horizon length is not an issue. For reservoirs, which have generally a longer memory, MPC applications are presently limited to short term management only. Short term reservoir management can be effectively used to deal with fast process, such as floods, but it is not capable of looking sufficiently ahead to handle long term issues, such as drought. To overcome this limitation, we propose an Infinite Horizon MPC (IH-MPC) solution that is particularly suitable for reservoir management. We propose to structure the input signal by use of orthogonal basis functions, therefore reducing the optimization argument to a finite number of variables, and making the control problem solvable in a reasonable time. We applied this solution for the management of the Manantali Reservoir. Manantali is a yearly reservoir located in Mali, on the Senegal river, affecting water systems of Mali, Senegal, and Mauritania. The long term horizon offered by IH-MPC is necessary to deal with the strongly seasonal climate of the region.
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.
Resumo:
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.
Resumo:
Guns stolen from law-abiding households provide the principal source of guns for criminals. The lethality of crime instruments increases with the availability of guns, so the gun market is subject to externalities that generate excessive ownership and inadequate spending on protective measures to deter gun theft. One motive for gun ownership is self defense, and the gun market is subject to coordination failure: the more guns purchased lawfully, the more will be stolen by criminals, so the greater the incentive for lawful . consumers to purchase guns for self defense. As a result, there may be multiple equilibria in the gun market and more than one equilibrium crime rate. We show that a simple refundable deposit for guns will internalize the externalities in the gun market and may cause large downward jumps in gun ownership, the lethality of crime instruments, and the social costs of crime.