965 resultados para CENTRAL VENOUS-PRESSURE
Resumo:
The type of surface used for running can influence the load that the locomotor apparatus will absorb and the load distribution could be related to the incidence of chronic injuries. As there is no consensus on how the locomotor apparatus adapts to loads originating from running Surfaces with different compliance, the objective of this study was to investigate how loads are distributed over the plantar surface while running on natural grass and on a rigid surface-asphalt. Forty-four adult runners with 4 3 years of running experience were evaluated while running at 12 km/h for 40 m wearing standardised running shoes and Pedar insoles (Novel). Peak pressure, contact time and contact area were measured in six regions: lateral, central and medial rearfoot, midfoot, lateral and media] forefoot. The Surfaces and regions were compared by three ANOVAS (2 x 6). Asphalt and natural grass were statistically different in all variables. Higher peak pressures were observed on asphalt at the central (p < 0.001) [grass: 303.8(66.7) kPa; asphalt: 342.3(76.3) kPa] and lateral rearfoot (p < 0.001) [grass: 312.7(75.8) kPa: asphalt: 350.9(98.3) kPa] and lateral forefoot (p < 0.001) [grass: 221.5(42.9) kPa asphalt: 245.3(55.5) kPa]. For natural grass, contact time and contact area were significantly greater at the central rearfoot (p < 0.001). These results suggest that natural grass may be a Surface that provokes lighter loads on the rearfoot and forefoot in recreational runners. (C) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Resumo:
In this study, we evaluated the acute effects of central NAC administration on baroreflex in juvenile SHR and Wistar Kyoto (WKY) rats. Male SHR and WKY rats (8 10 weeks old) were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. After basal MAP and HR recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus). Baroreflex was evaluated before, 5, 15, 30 and 60 minutes after NAC injection into the 4th V. Vehicle treatment did not change baroreflex responses in WKY and SHR. Central NAC slightly but significantly increased basal HR at 15 minutes and significantly reduced PHE-induced increase in MAP 30 and 60 minutes after NAC injection (p < 0.05) in WKY rats. In relation to SHR, NAC decreased HR range 15 and 30 minutes after its administration. In conclusion, acute NAC into the 4th V does not improve baroreflex in juvenile SHR.
Resumo:
Background: Splanchnic perfusion is prone to early injury and persists despite normalization of global hemodynamic variables in sepsis. Volume replacement guided by oxygen derived variables has been recommended in the management of septic patients. Our hypothesis was that a hypertonic isoneotic solution Would improve the benefits of crystalloids replacement guided by mixed venous oxygen saturation. Methods: Seventeen anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live E. coli in 30 minutes. They were then randomized into three groups: control group (n = 3) bacterial infusion without treatment; normal saline (n = 7), initial fluid replacement with 32 mL/kg of normal saline during 20 minutes; hypertonic solution (n = 7), initial fluid replacement with 4 mL/kg of hypertonic solution during 5 minutes. After 30 and 60 Minutes, additional boluses of normal saline were administered when mixed venous oxygen saturation remained below 70%. Mean arterial pressure, cardiac output; regional blood flows, systemic and regional oxygen-derived variables, and lactate levels were assessed. Animals were observed for 90 minutes and then killed. Hystopathological analysis including apoptosis detection using terminal deoxynucleotidil transferase mediated dUTP-biotin nick end labeling was performed. Results: A hypodynamic septic shock was observed after bacterial infusion. Both the fluid-treated groups presented similar transient benefits in systemic and regional variables. A greater degree of gut epithelial cells apoptosis was observed in normal saline-treated animals. Conclusions: Although normalization of mixed venous oxygen saturation was not associated with restoration of markers of splanchnic or other systemic perfusion variables, the initial fluid savings with hypertonic saline and its latter effect on gut apoptosis may be of interest in sepsis management.
Resumo:
Introduction Reduction of automatic pressure support based on a target respiratory frequency or mandatory rate ventilation (MRV) is available in the Taema-Horus ventilator for the weaning process in the intensive care unit (ICU) setting. We hypothesised that MRV is as effective as manual weaning in post-operative ICU patients. Methods There were 106 patients selected in the postoperative period in a prospective, randomised, controlled protocol. When the patients arrived at the ICU after surgery, they were randomly assigned to either: traditional weaning, consisting of the manual reduction of pressure support every 30 minutes, keeping the respiratory rate/tidal volume (RR/TV) below 80 L until 5 to 7 cmH(2)O of pressure support ventilation (PSV); or automatic weaning, referring to MRV set with a respiratory frequency target of 15 breaths per minute (the ventilator automatically decreased the PSV level by 1 cmH(2)O every four respiratory cycles, if the patient`s RR was less than 15 per minute). The primary endpoint of the study was the duration of the weaning process. Secondary endpoints were levels of pressure support, RR, TV (mL), RR/TV, positive end expiratory pressure levels, FiO(2) and SpO(2) required during the weaning process, the need for reintubation and the need for non-invasive ventilation in the 48 hours after extubation. Results In the intention to treat analysis there were no statistically significant differences between the 53 patients selected for each group regarding gender (p = 0.541), age (p = 0.585) and type of surgery (p = 0.172). Nineteen patients presented complications during the trial (4 in the PSV manual group and 15 in the MRV automatic group, p < 0.05). Nine patients in the automatic group did not adapt to the MRV mode. The mean +/- sd (standard deviation) duration of the weaning process was 221 +/- 192 for the manual group, and 271 +/- 369 minutes for the automatic group (p = 0.375). PSV levels were significantly higher in MRV compared with that of the PSV manual reduction (p < 0.05). Reintubation was not required in either group. Non-invasive ventilation was necessary for two patients, in the manual group after cardiac surgery (p = 0.51). Conclusions The duration of the automatic reduction of pressure support was similar to the manual one in the postoperative period in the ICU, but presented more complications, especially no adaptation to the MRV algorithm. Trial Registration Trial registration number: ISRCTN37456640
Resumo:
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by iv. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6 h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6 h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6 h post-injection. LPS significantly increased plasma OT concentration at 2 and 4 h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.
Resumo:
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
Black-striped wallabies (Macropus dorsalis) are uncommon to rare in most of their former range, yet in parts of central Queensland where they are still locally common they are regarded as a serious pasture pest. There is considerable pressure from cattle graziers to reduce their density because of the putative damage that they cause to cattle pasture. Here we examined the effects of this species and other herbivores on pasture by monitoring vegetation cover between 1993 and 1998 in exclosures in brigalow, and poplar box communities on three grazing properties in the Maranoa region. The exclosures selectively allowed access to either: all vertebrate grazers including cattle; rabbits, bettongs, and wallabies; rabbits and bettongs; no vertebrate grazers. The greatest effects on the structure and species composition of pasture were caused by cattle, but wallabies did consume commercially important quantities of grass at some times of the year. This conflicts with local opinion that sees wallabies as the major cause of pasture degradation. Herein lies the management problem that sees continued reduction in wallaby habitat, and fragmentation of the species.
Resumo:
The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex), blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes), and changes in blood-gas composition (chemoreceptor reflex). The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME) in which the interplay of these three reflexes is demonstrable.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Produção de bioetanol a partir de um resíduo orgânico proveniente da central de compostagem da LIPOR
Resumo:
Mestrado em Engenharia Química
Resumo:
O uso da tecnologia tem crescido nas últimas décadas nas mais diversas áreas, seja na indústria ou no dia-a-dia, e é cada vez mais evidente os benefícios que traz. No desporto não é diferente. Cada dia surgem novos desenvolvimentos objetivando a melhoria do desempenho dos praticantes de atividades físicas, possibilitando atingir resultados nunca antes pensados. Além disto, a utilização da tecnologia no desporto permite a obtenção de dados biomecânicos que podem ser utilizados tanto no treinamento quando na melhoria da qualidade de vida dos atletas auxiliando na prevenção de lesões, por exemplo. Deste modo, o presente projeto se aplica na área do desporto, nomeadamente, na modalidade do surfe, onde a ausência de trabalhos científicos ainda é elevada, aliando a tecnologia eletrônica ao desporto para quantificar informações até então desconhecidas. Três fatores básicos de desempenho foram levantados, sendo eles: equilíbrio, posicionamento dos pés e movimentação da prancha de surfe. Estes fatores levaram ao desenvolvimento de um sistema capaz de medi-los dinamicamente através da medição das forças plantares e da rotação da prancha de surfe. Além da medição dos fatores, o sistema é capaz de armazenar os dados adquiridos localmente através de um cartão de memória, para posterior análise; e também enviá-los através de uma comunicação sem fio, permitindo a visualização do centro de pressões plantares; dos ângulos de rotação da prancha de surfe; e da ativação dos sensores; em tempo real. O dispositivo consiste em um sistema eletrônico embarcado composto por um microcontrolador ATMEGA1280; um circuito de aquisição e condicionamento de sinal analógico; uma central inercial; um módulo de comunicação sem fio RN131; e um conjunto de sensores de força Flexiforce. O firmware embarcado foi desenvolvido em linguagem C. O software Matlab foi utilizado para receção de dados e visualização em tempo real. Os testes realizados demostraram que o funcionamento do sistema atende aos requisitos propostos, fornecendo informação acerca do equilíbrio, através do centro de pressões; do posicionamento dos pés, através da distribuição das pressões plantares; e do movimento da prancha nos eixos pitch e roll, através da central inercial. O erro médio de medição de força verificado foi de -0.0012 ± 0.0064 N, enquanto a mínima distância alcançada na transmissão sem fios foi de 100 m. A potência medida do sistema foi de 330 mW.