959 resultados para CELL-DERIVED FACTOR-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TNF ligand family member BAFF (B cell activating factor belonging to the TNF family, also called Blys, TALL-1, zTNF-4, or THANK) is an important survival factor for B cells [corrected]. In this study, we show that BAFF is able to regulate T cell activation. rBAFF induced responses (thymidine incorporation and cytokine secretion) of T cells, suboptimally stimulated through their TCR. BAFF activity was observed on naive, as well as on effector/memory T cells (both CD4+ and CD8+ subsets), indicating that BAFF has a wide function on T cell responses. Analysis of the signal transduced by BAFF into T cells shows that BAFF has no obvious effect on T cell survival upon activation, but is able to deliver a complete costimulation signal into T cells. Indeed, BAFF is sufficient to induce IL-2 secretion and T cell division, when added to an anti-TCR stimulation. This highlights some differences in the BAFF signaling pathway in T and B cells. In conclusion, our results indicate that BAFF may play a role in the development of T cell responses, in addition to its role in B cell homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface molecules of Staphylococcus aureus are involved in the colonization of vascular endothelium which is a crucial primary event in the pathogenesis of infective endocarditis (IE). The ability of these molecules to also launch endothelial procoagulant and proinflammatory responses, which characterize IE, is not known. In the present study we investigated the individual capacities of three prominent S. aureus surface molecules; fibronectin-binding protein A (FnBPA) and B (FnBPB) and clumping factor A (ClfA), to promote bacterial adherence to cultured human endothelial cells (ECs) and to activate phenotypic and functional changes in these ECs. Non-invasive surrogate bacterium Lactococcus lactis, which, by gene transfer, expressed staphylococcal FnBPA, FnBPB or ClfA molecules were used. Infection of ECs increased 50- to 100-fold with FnBPA- or FnBPB-positive recombinant lactococci. This coincided with EC activation, interleukin-8 secretion and surface expression of ICAM-1 and VCAM-1 and concomitant monocyte adhesion. Infection with ClfA-positive lactococci did not activate EC. FnBPA-positive L. lactis also induced a prominent tissue factor-dependent endothelial coagulation response that was intensified by cell-bound monocytes. Thus S. aureus FnBPs, but not ClfA, confer invasiveness and pathogenicity to non-pathogenic L. lactis organisms indicating that bacterium-EC interactions mediated by these adhesins are sufficient to evoke inflammation as well as procoagulant activity at infected endovascular sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Taking advantage of two transgenic lines, glast.DsRed and crx.gfp, that express fluorescent proteins in glial and photoreceptor cells respectively, we investigate the role of glast-positive glial cells (GPCs) in the survival/differentiation/proliferation of age-matched photoreceptor cells. Methods: Primary retinal cells were isolated from newborn transgenic mouse retina (glast.dsRed::crx.gfp) at postnatal day (P0/P1) and propagated in defined medium containing epidermal growth factor (EGF) and fibroblast growth factor 2 (bFGF). By flow-sorting another population of pure GPCs was isolated. Both populations were expanded and analyzed for the presence of specific retinal cell markers. Notably, the primary cell culture collected from the transgenic line glast.dsRed::crx.gfp showed a conspicuous presence of immature photoreceptors growing on top of GPCs. In order to reveal the role of such cells in the survival/differentiation/proliferation of photoreceptors we set up in vitro cultures of retina-derived cells that allowed long-term time-lapse recordings charting every cell division, death and differentiation event. To assess the regenerative potential of GPCs we challenged them with compounds mimicking retinal degeneration (NMU, NMDA, Zaprinast). Mass spectrometry (MS), immunostainings and other molecular approaches were performed to reveal adhesion molecules involved in the relationship between glial cells and photoreceptors. Results: Both primary cell lines were highly homogenous, with an elongated morphology and the majority expressed Müller glia markers (MG) such as glast, blbp, glt-1, vimentin, glutamine synthetase (GS), GFAP, cd44, mash1 and markers of reactive Müller glia such as nestin, pax6. Conversely, none of them were found positive for retinal neuron markers like tuj1, otx2, recoverin. Primary cultures of GPCs show the incapability of glial cells to give rise to photoreceptors in both wild type or degenerative environment. Furthermore, primary cultures of pure GPCs challenged with different compounds did not highlight the production of new glial cell-derived photoreceptors. Adhesion molecules involved in the contact between photoreceptors and glial cells are still under investigation. Conclusions: Primary glia cells do not give rise to photoreceptor cells in wt and degenerative conditions at least in vitro. The roles of glial cells seem to be more linked to the maintenance/proliferation of photoreceptor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND A previous study showed that the glucocorticoid dexamethasone, at doses of 100 ¿g/kg and above, inhibited leucocyte adhesion to rat mesenteric postcapillary venules activated with interleukin 1ß (IL-1ß), as assessed by videomicroscopy. AIMS To identify whether the adhesion molecule, intercellular adhesion molecule 1 (ICAM-1), or the chemokine KC could be targeted by the steroid to mediate its antiadhesive effect. METHODS Rat mesenteries were treated with IL-1ß (20 ng intraperitoneally) and the extent of leucocyte adhesion measured at two and four hours using intravital microscopy. Rats were treated with dexamethasone, and passively immunised against ICAM-1 or KC. Endogenous expression of these two mediators was validated by immunohistochemistry, ELISA, and the injection of specific radiolabelled antibodies. RESULTS Dexamethasone greatly reduced IL-1ß induced leucocyte adhesion, endothelial expression of ICAM-1 in the postcapillary venule, and release of the mast cell derived chemokine KC. Injection of specific antibodies to the latter mediators was also extremely effective in downregulating (>80%) IL-1ß induced leucocyte adhesion. CONCLUSIONS Induction by IL-1ß of endogenous ICAM-1 and KC contributes to leucocyte adhesion to inflamed mesenteric vessels. Without excluding other possible mediators, these data clearly show that dexamethasone interferes with ICAM-1 expression and KC release from mast cells, resulting in suppression of leucocyte accumulation in the bowel wall, which is a prominent feature of several gastrointestinal pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cardiac stem cells have been isolated based on stem cell surface markers, no single marker is stem cell-specific. Clonogenicity is a defining functional property of stemness. We therefore analyzed cardiac cell clones derived from human hearts.Methods: Clonogenic cells were derived from adult human atrial samples. Cells were either cultured in the absence of an initial marker selection or, in separate experiments, they were initially selected for c-kit (CD117), CD31 or CD164 by magnetic immunobeads, or for high aldehyde dehydrogenase activity (ALDH) by FACS. High ALDH activity has been linked to stem/progenitor cells in several tissues. Surface marker analysis was performed by flow cytometry. Cultured cells were also exposed to different factors that modulate cell differentiation, including Dikkopf-1, Noggin, and Wnt-5.Results: Clonogenic cells mainly showed fibroblast-like morphology, ability to grow for more than 30 passages in vitro, and a heterogeneous marker profile even in clones derived from the same cardiac sample. The predominant phenotype was positive for CD13, CD29, CD31, CD44, CD54, CD105 and CD146, but negative for CD10, CD11b, CD14, CD15, CD34, CD38, CD45, CD56, CD106, CD117, CD123, CD133, CD135 and CD271, primarily consistent with endothelial/vascular progenitor cells. However, a minority of clones showed a different profile characterized by expression of CD90, CD106 and CD318, but not CD31 and CD146, consistent with mesenchymal stem/progenitor cells. When initial cell selection was performed, both phenotypes were observed, similarly to unselected cells, irrespective of the selection marker used. Of note, CD117+ sorted cell clones were CD117-negative in culture. Regardless of the immunophenotype, several clones were able to form spheric cell aggregates (cardiospheres), a distinct stem cell property. Dikkopf-1 induced marked CD15 and CD106 upregulation, consistent with stromal differentiation; this effect was prevented by Noggin.Conclusions: The adult human heart contains clonogenic stem/progenitor cells that can be expanded for many passages and form cardiospheres. The surface marker profile of these cells is heterogeneous, consistent with a majority of clones being comprised of endothelial or vascular progenitor cells and a minority of clones consisting of mesenchymal stem/progenitor cells. Dikkopf-1 and Noggin showed opposing effects on stromal differentiation of human cardiac cell clones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem (ES) cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd) gene and a fusion protein consisting of either myosin light chain (MLC)-3f or human alpha-actinin 2A and enhanced green fluorescent protein (EGFP) under the transcriptional control of the alpha-cardiac myosin heavy chain (alpha-MHC) promoter. Insertion of the DNase I-hypersensitive site (HS)-2 element from the beta-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The alpha-MHC-alpha-actinin-EGFP, but not the alpha-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cell-derived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-cell hybridomas were obtained after fusion of BW 5147 thymoma and long-term cultured T cells specific for cytochrome c peptide 66-80 derivatized with a 2,4-dinitroaminophenyl (DNAP) group. The resulting hybridomas were selected for their capacity to specifically bind to soluble radiolabeled peptide antigen. One T-cell hybrid was positive for antigen binding. This hybrid T cell exhibits surface phenotypic markers of the parent antigen-specific T cells. The binding could be inhibited either by an excess of unlabeled homologous antigen or by cytochrome c peptide 11-25 derivatized with a 2-nitrophenylsulfenyl group. Several other peptide antigens tested failed to inhibit binding of the radioactive peptide. This suggests that a specific amino acid sequence, modified by a DNAP group, is the antigenic structure recognized by the putative T-cell receptor. In addition, direct interaction of DNAP-66-80 peptide with the hybridoma cell line induced production of the T-cell growth factor interleukin 2. Furthermore, supernatants derived from syngeneic macrophages pulsed with the relevant peptide also induced the antigen-specific hybridoma to produce interleukin 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.