976 resultados para CASSINI RADAR
Resumo:
The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.
Resumo:
During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the western coast of Potter Peninsula (Area 1) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 21 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).
Resumo:
During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the southwestern coast of Potter Peninsula (Area 2) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 49 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).
Resumo:
The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved under¬standing of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two ice- flow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.