913 resultados para C-jun Kinase
Resumo:
Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.
Resumo:
Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex.
Resumo:
It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.
Resumo:
Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.
Resumo:
PKC-mediated signalling pathways are important in cell growth and differentiation, and aberrations in these pathways are implicated in tumourigenesis. The objective of this project was to clarify the link between cell growth inhibition and PKC modulation.The PKC activators bryostatin 1 and 12-0-tetradecanoylphorbol-13-acetate (TPA) inhibited growth in A549 and MCF-7 adenocarcinoma cells with great potency, and induced HL-60 leukaemia cell differentiation. Bistratene A affected these cells similarly. Experiments were conducted to test the hypotheses that bistratene A exerts its effects via PKC modulation and that characteristics of cytostasis induced by bryostatin 1 and TPA depend upon PKC isozyme-specific events. After incubation of A549 cells with TPA or bistratene A, 2D phosphoprotein electrophoretograrns revealed three proteins phosphorylated by both agents. However, bistratene A was unable to induce the formation of cellular networks on the basement membrane substitute Matrigel, and staurosporine was unable to reverse bistratene A-induced [3H]thymidine uptake inhibition, unlike TPA. Bistratene A did not induce PKC translocation or downregulation, activate or inhibit A549 and MCF-7 cell cytosolic PKC or compete for phorbol ester receptors. Western blot analysis and hydroxylapatite chromatography identified PKC α, ε and ζ in these cells. Bistratene A was unable to activate any of these isoforms. Therefore the agent does not exert its antiproliferative effects by modulation of PKC activity. The abilities of bryostatin 1 and TPA (10nM-1μM) to induce PKC isoform translocation and downregulation were compared with antiproliferative effects. Both agents induced dose-dependent downregulation and translocation of PKC α and ε to particulate and nuclear cell fractions. PKC ζ was translocated to the particulate fraction by both agents in MCF-7 cells. The similarity of PKC isoform redistribution by these agents did not explain their divergent effects on cell growth, and the role of nuclear translocation of PKC in cytostasis was not confirmed by these studies. Alternative factors governing the characteristics of growth inhibition induced by these agents are discussed.
Resumo:
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.
Resumo:
The classical concept of estrogen receptor (ER) activation is that steroid passes the cell membrane, binds to its specific protein receptor in the cell's cytoplasm and the steroid-receptor complex travels to the nucleus where it activates responsive genes. This basic idea has been challenged by results of experiments demonstrating insulin-like growth factor 1 (IGF-1) activation of the ER in the complete absence of estrogen suggesting at least one other mechanism of ER activation not involving steroid. One explanation is that activation of the cell surface IGF-1 receptor leads to synthesis of an intracellular protein(s) able to bind to and stimulate the ER. Based on results using the two-hybrid system, coimmunoprecipitation and transfection-luciferase assays, we herein show that one of these proteins could well be receptor for activated C kinase 1 (RACK-1). Using the human ER type α (ER-α) as bait, a cloned complementary deoxyribonucleic acid (cDNA) library from IGF-1 treated human breast cancer MCF-7 cells was screened for ER-α - protein interactions. Many positive clones were obtained which contained the RACK-1 cDNA sequence. Coimmunoprecipitation of in-vitro translation products of the ER-α and RACK-1 confirmed the interaction between the two proteins. Transfection studies using the estrogen response element spliced to a luciferase reporter gene revealed that constitutive RACK-1 expression was able to powerfully stimulate ER-α activity under estrogen-free conditions. This effect could be enhanced by 17β-estradiol (E2) and blocked by tamoxifen, an E2 antagonist. These results show that RACK-1 is able to activate the ER-α in the absence of E2, although together with the latter, enhanced effects occur. Since RACK-1 gene expression is stimulated by IGF-1, it is distinctly possible that RACK-1 is the mediator of the stimulatory effects of IGF-1 on ER-α. © 2014 JMS.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.