969 resultados para C-13 Nmr Calculations
Resumo:
综述了高分辨~(13)C核磁共振谱(~(13)C NMR)在聚合物辐射化学研究中的应用。重点介绍了用固体高分辨~(13)C NMR研究聚合物辐射交联结构途径和应用范围。
Resumo:
80年代出现的光活性高聚物—聚甲基丙烯酸三苯甲酯(PTrMA)是由非手性单体经不对称阴离子聚合得到的。近年来,PTrMA作为手性固定相在分离手性化合物方面得到了越来越多的实际应用。由于聚合物侧基上的三个苯基产生的大位阻,使它具
Resumo:
合成了Gd~(3+)与2,3-二羟基-对-二甲苯胺四乙酸(DPTA)的固体配合物,研究了该化合物作为水溶性~(13)NMR弛豫试剂的性质,证明该试剂对增强各种氨基酸(苏氨酸、半胱氨酸、精氨酸、组氨酸、色氨酸和抗坏血酸)季碳原子的谱峰强度是十分有效的。精氨酸的自旋-晶格弛豫时间(T_1)测量表明,Gd-DPTA可使精氨酸分子中季碳T_1缩短200倍以上,效果优于Gd-DTPA。
Resumo:
利用~(13)C核磁共振法研究了酚酞/双酚T型聚芳醚砜共聚物((PP/Bis-T)PES)的序列结构,分析了将双酚T单元引入酚酞型聚芳醚砜(PES-C)聚合物分子中对其酚酞单元的核磁共振谱的影响,并证实了(PP/BiS-T)PES属于无规共聚物。
Resumo:
We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.
Resumo:
Pure O-methyl N-methoxycarbonyl thiocarbamate CH(3)OC(S)N(H)C(O)OCH(3) (I) and O-ethyl N-methoxycarbonyl thiocarbamate, CH(3)CH(2)OC(S)N(H)C(O)OCH(3) (II), are quantitatively prepared by the addition reaction between the CH(3)OC(O)NCS and the corresponding alcohols. The compounds are characterized by multinuclear ((1)H and (13)C) and bi-dimensional ((13)C HSQC) NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach involving crystallographic data, vibration spectra and theoretical calculations. The low-temperature (150 K) crystal structure of II was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic space group P2(1)/n with a = 4.088(1)angstrom. b = 22.346(1)angstrom, c = 8.284(1)angstrom, beta = 100.687(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the thiocarbamate group -OC(S)N(H)- is syn (C=S double bond in synperiplanar orientation with respect to the N-H single bond), while the methoxycarbonyl C=O double bond is in antiperiplanar orientation with respect to the N-H bond. The non-H atoms in II are essentially coplanar and the molecules are arranged in the crystal lattice as centro-symmetric dimeric units held by N-H center dot center dot center dot S=C hydrogen bonds Id(N center dot center dot center dot S) = 3.387(1)angstrom, <(N-H center dot center dot center dot S) = 166.4(2)degrees]. Furthermore, the effect of the it electronic resonance in the structural and vibrational properties is also discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.
Resumo:
The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.
Resumo:
A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
We report a single C-13 spin edited selective proton-proton correlation experiment to decipher overcrowded 13C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked C-13 satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I3S and for each diastereotopic proton in I2S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional H-1 spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear (C-13) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Reactions of hexachlorocyclodiphosphazane [MeNPCl3]2 with primary aromatic amines afforded the bisphosphinimine hydrochlorides [(RNH)2(RN)PN(Me)P(NHMe)(NHR)2]+Cl- (R = Ph 1, C6H4Me-4 2 or C6H4OMe-4 3). Dehydrochlorination of 2 and 3 by methanolic KOH yielded highly basic bisphosphinimines [(RNH)2(RN)PN(Me)P(NMe)(NHR)2] (R = C6H4Me-4 4 or C6H4OMe-4 5). Compounds 1-5 have been characterised by elemental analysis and IR and NMR (H-1, C-13, P-31) spectroscopy. The structure of 2 has been confirmed by single-crystal X-ray diffraction. The short P-N bond lengths and the conformations of the PN, units can be explained on the basis of cumulative negative hyperconjugative interactions between nitrogen lone pairs and adjacent P-N sigma* orbitals. Ab initio calculations on the model phosphinimine (H2N)3P=NH and its protonated form suggest that (amino)phosphinimines would be stronger bases compared to many organic bases such as guanidine.
Resumo:
The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.
Resumo:
The reaction of Pd{kappa(2)(C,N)-C6H3Me-3-(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (Ar = 2-MeC6H4; 1) with 4 equiv of PhC C-C(O)OMe in CH2Cl2 afforded Pd{kappa(2)(C,N)-C(Ph)=C(C(O)OMe)C(Ph)=C(C(O)-OMe)C6H3Me-3(N=C(NH Ar)(2))-2}Br] (Ar = 2-MeC6H4; 2) in 70% yield, and the aforementioned reaction carried out with 10 equiv of PhC C-C(O)OR (R = Me, and Et) afforded an admixture of two regioisomers of Pd{kappa(3)(N,C,O)-O=C(OR)-C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)( 2))- 2}Br] (Ar = 2-MeC6H4; R = Me (3a/3b), Et (4a/4b)) in 80 and 87% yields, respectively. In one attempt, the minor regioisomer, 4b, was isolated from the mixture in 6% yield by fractional crystallization. Palladacycles 3a/3b and 4a/4b, upon stirring in CH2Cl2/MeCN (1/1, v/v) mixture at ambient condition for S days, afforded Pd{eta(3)-allyl,(KN)-N-1)-C-5(C(O)OR)(2)Ph3C-(C(O)OR)C6H3Me-3(N=C(NH Ar)(2))(-2)}Br] (Ar = 2-MeC6H4; R = Me (5a/5b), Et (6a/6b)) in 94 and 93% yields, respectively. Palladacycles 3a/3b and 4a/4b, upon reaction with AgOTf in CH2CH2/Me2C(O) (1/1, v/v) mixture at ambient temperature for 15 min, afforded Pd{kappa(3)(N,C,O)-O=C(OR)C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)(2 ))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (7a/7b), Et (8a/8b)) in 79 and 77% yields, respectively. Palladacycles 7a/7b and 8a/ 8b, upon reflux in PhC1 separately for 6 h, or palladacycles 5a/5b and 6a/6b, upon treatment with AgOTf in CH2Cl2/Me2C(O) (7/3, v/v) mixture for 15 min, afforded Pd{(eta(2)-Ph)C5Ph2(C(O)OR)kappa(2)(C,N)-C(C(O)OR)C6H3Me-3(N=C(NHAr) (2))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (9a/9h), Et (10a/10b)) in >= 87% yields. Palladacycles 9a/9b, upon stirring in MeCN in the presence of excess NaOAc followed by crystallization of the reaction mixture in the same solvent, afforded Pd{kappa(3)(N,C,C)-(C6H4)C5Ph2(C(O)OMe)(2)C(C(O)OMe)(2)C6H3Me-3(N=C( NHAr)(2))-2}(NCMe)] (Ar = 2-MeC6H4; 11a/11b) in 82% yield. The new palladacycles were characterized by analytical, IR, and NMR (H-1 and C-13) spectroscopic techniques, and the molecular structures of 2, 3a, 4a, 4b, 5a, 6a, 7a, 9a, 10a, and 11a-d(3) were determined by single crystal X-ray diffraction. The frameworks in the aforementioned palladacycles, except that present in 2, are unprecedented. Plausible pathways for the formation of new palladacycles and the influence of the guanidine unit in 1, substituents in alkynes, reaction conditions, and electrophilicity of the bromide and the triflate upon the frameworks of the insertion products have been discussed.