971 resultados para Branch libraries.
Resumo:
T actitivity in LiPb LiPb mock-up material irradiated in Frascati: measurement and MCNP results
Resumo:
PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries
Resumo:
This work is aimed to present the main differences of nuclear data uncertainties among three different nuclear data libraries: EAF-2007, EAF-2010 and SCALE-6.0, under different neutron spectra: LWR, ADS and DEMO (fusion)
Resumo:
Memory analysis techniques have become sophisticated enough to model, with a high degree of accuracy, the manipulation of simple memory structures (finite structures, single/double linked lists and trees). However, modern programming languages provide extensive library support including a wide range of generic collection objects that make use of complex internal data structures. While these data structures ensure that the collections are efficient, often these representations cannot be effectively modeled by existing methods (either due to excessive analysis runtime or due to the inability to represent the required information). This paper presents a method to represent collections using an abstraction of their semantics. The construction of the abstract semantics for the collection objects is done in a manner that allows individual elements in the collections to be identified. Our construction also supports iterators over the collections and is able to model the position of the iterators with respect to the elements in the collection. By ordering the contents of the collection based on the iterator position, the model can represent a notion of progress when iteratively manipulating the contents of a collection. These features allow strong updates to the individual elements in the collection as well as strong updates over the collections themselves.
Resumo:
We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller.
Resumo:
This work is aimed to present the main differences of nuclear data uncertainties among three different nuclear data libraries: EAF-2007, EAF-2010 and SCALE-6.0, under different neutron spectra: LWR, ADS and DEMO (fusion). To take into account the neutron spectrum, the uncertainty data are collapsed to onegroup. That is a simple way to see the differences among libraries for one application. Also, the neutron spectrum effect on different applications can be observed. These comparisons are presented only for (n,fission), (n,gamma) and (n,p) reactions, for the main transuranic isotopes (234,235,236,238U, 237Np, 238,239,240,241Pu, 241,242m,243Am, 242,243,244,245,246,247,248Cm, 249Bk, 249,250,251,252Cf). But also general comparisons among libraries are presented taking into account all included isotopes. In other works, target accuracies are presented for nuclear data uncertainties; here, these targets are compared with uncertainties on the above libraries. The main results of these comparisons are that EAF-2010 has reduced their uncertainties for many isotopes from EAF-2007 for (n,gamma) and (n,fission) but not for (n,p); SCALE-6.0 gives lower uncertainties for (n,fission) reactions for ADS and PWR applications, but gives higher uncertainties for (n,p) reactions in all applications. For the (n,gamma) reaction, the amount of isotopes which have higher uncertainties is quite similar to the amount of isotopes which have lower uncertainties when SCALE-6.0 and EAF-2010 are compared. When the effect of neutron spectra is analysed, the ADS neutron spectrum obtained the highest uncertainties for (n,gamma) and (n,fission) reactions of all libraries.
Resumo:
Some verification and validation techniques have been evaluated both theoretically and empirically. Most empirical studies have been conducted without subjects, passing over any effect testers have when they apply the techniques. We have run an experiment with students to evaluate the effectiveness of three verification and validation techniques (equivalence partitioning, branch testing and code reading by stepwise abstraction). We have studied how well able the techniques are to reveal defects in three programs. We have replicated the experiment eight times at different sites. Our results show that equivalence partitioning and branch testing are equally effective and better than code reading by stepwise abstraction. The effectiveness of code reading by stepwise abstraction varies significantly from program to program. Finally, we have identified project contextual variables that should be considered when applying any verification and validation technique or to choose one particular technique.
Resumo:
The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.
Resumo:
The uncertainties on the isotopic composition throughout the burnup due to the nuclear data uncertainties are analysed. The different sources of uncertainties: decay data, fission yield and cross sections; are propagated individually, and their effect assessed. Two applications are studied: EFIT (an ADS-like reactor) and ESFR (Sodium Fast Reactor). The impact of the uncertainties on cross sections provided by the EAF-2010, SCALE6.1 and COMMARA-2.0 libraries are compared. These Uncertainty Quantification (UQ) studies have been carried out with a Monte Carlo sampling approach implemented in the depletion/activation code ACAB. Such implementation has been improved to overcome depletion/activation problems with variations of the neutron spectrum.
Resumo:
New digital artifacts are emerging in data-intensive science. For example, scientific workflows are executable descriptions of scientific procedures that define the sequence of computational steps in an automated data analysis, supporting reproducible research and the sharing and replication of best-practice and know-how through reuse. Workflows are specified at design time and interpreted through their execution in a variety of situations, environments, and domains. Hence it is essential to preserve both their static and dynamic aspects, along with the research context in which they are used. To achieve this, we propose the use of multidimensional digital objects (Research Objects) that aggregate the resources used and/or produced in scientific investigations, including workflow models, provenance of their executions, and links to the relevant associated resources, along with the provision of technological support for their preservation and efficient retrieval and reuse. In this direction, we specified a software architecture for the design and implementation of a Research Object preservation system, and realized this architecture with a set of services and clients, drawing together practices in digital libraries, preservation systems, workflow management, social networking and Semantic Web technologies. In this paper, we describe the backbone system of this realization, a digital library system built on top of dLibra.
Resumo:
Presentación del trabajo realizado en el marco del proyecto F4E, sobre el procesamiento de librerías de dispersión térmica de neutrones en formato ACE para su uso con el código MCNP. Se presentan tanto los métodos y procedimientos empleados, como los resultados y diferencias entre las distintas fuentes de datos.
Resumo:
La motivación de esta tesis es el desarrollo de una herramienta de optimización automática para la mejora del rendimiento de formas aerodinámicas enfocado en la industria aeronáutica. Este trabajo cubre varios aspectos esenciales, desde el empleo de Non-Uniform Rational B-Splines (NURBS), al cálculo de gradientes utilizando la metodología del adjunto continuo, el uso de b-splines volumétricas como parámetros de diseño, el tratamiento de la malla en las intersecciones, y no menos importante, la adaptación de los algoritmos de la dinámica de fluidos computacional (CFD) en arquitecturas hardware de alto paralelismo, como las tarjetas gráficas, para acelerar el proceso de optimización. La metodología adjunta ha posibilitado que los métodos de optimización basados en gradientes sean una alternativa prometedora para la mejora de la eficiencia aerodinámica de los aviones. La formulación del adjunto permite calcular los gradientes de una función de coste, como la resistencia aerodinámica o la sustentación, independientemente del número de variables de diseño, a un coste computacional equivalente a una simulación CFD. Sin embargo, existen problemas prácticos que han imposibilitado su aplicación en la industria, que se pueden resumir en: integrabilidad, rendimiento computacional y robustez de la solución adjunta. Este trabajo aborda estas contrariedades y las analiza en casos prácticos. Como resumen, las contribuciones de esta tesis son: • El uso de NURBS como variables de diseño en un bucle de automático de optimización, aplicado a la mejora del rendimiento aerodinámico de alas en régimen transónico. • El desarrollo de algoritmos de inversión de punto, para calcular las coordenadas paramétricas de las coordenadas espaciales, para ligar los vértices de malla a las NURBS. • El uso y validación de la formulación adjunta para el calculo de los gradientes, a partir de las sensibilidades de la solución adjunta, comparado con diferencias finitas. • Se ofrece una estrategia para utilizar la geometría CAD, en forma de parches NURBS, para tratar las intersecciones, como el ala-fuselaje. • No existen muchas alternativas de librerías NURBS viables. En este trabajo se ha desarrollado una librería, DOMINO NURBS, y se ofrece a la comunidad como código libre y abierto. • También se ha implementado un código CFD en tarjeta gráfica, para realizar una valoración de cómo se puede adaptar un código sobre malla no estructurada a arquitecturas paralelas. • Finalmente, se propone una metodología, basada en la función de Green, como una forma eficiente de paralelizar simulaciones numéricas. Esta tesis ha sido apoyada por las actividades realizadas por el Área de Dinámica da Fluidos del Instituto Nacional de Técnica Aeroespacial (INTA), a través de numerosos proyectos de financiación nacional: DOMINO, SIMUMAT, y CORESFMULAERO. También ha estado en consonancia con las actividades realizadas por el departamento de Métodos y Herramientas de Airbus España y con el grupo Investigación y Tecnología Aeronáutica Europeo (GARTEUR), AG/52. ABSTRACT The motivation of this work is the development of an automatic optimization strategy for large scale shape optimization problems that arise in the aeronautics industry to improve the aerodynamic performance; covering several aspects from the use of Non-Uniform Rational B-Splines (NURBS), the calculation of the gradients with the continuous adjoint formulation, the development of volumetric b-splines parameterization, mesh adaptation and intersection handling, to the adaptation of Computational Fluid Dynamics (CFD) algorithms to take advantage of highly parallel architectures in order to speed up the optimization process. With the development of the adjoint formulation, gradient-based methods for aerodynamic optimization become a promising approach to improve the aerodynamic performance of aircraft designs. The adjoint methodology allows the evaluation the gradients to all design variables of a cost function, such as drag or lift, at the equivalent cost of more or less one CFD simulation. However, some practical problems have been delaying its full implementation to the industry, which can be summarized as: integrability, computer performance, and adjoint robustness. This work tackles some of these issues and analyse them in well-known test cases. As summary, the contributions comprises: • The employment of NURBS as design variables in an automatic optimization loop for the improvement of the aerodynamic performance of aircraft wings in transonic regimen. • The development of point inversion algorithms to calculate the NURBS parametric coordinates from the space coordinates, to link with the computational grid vertex. • The use and validation of the adjoint formulation to calculate the gradients from the surface sensitivities in an automatic optimization loop and evaluate its reliability, compared with finite differences. • This work proposes some algorithms that take advantage of the underlying CAD geometry description, in the form of NURBS patches, to handle intersections and mesh adaptations. • There are not many usable libraries for NURBS available. In this work an open source library DOMINO NURBS has been developed and is offered to the community as free, open source code. • The implementation of a transonic CFD solver from scratch in a graphic card, for an assessment of the implementability of conventional CFD solvers for unstructured grids to highly parallel architectures. • Finally, this research proposes the use of the Green's function as an efficient paralellization scheme of numerical solvers. The presented work has been supported by the activities carried out at the Fluid Dynamics branch of the National Institute for Aerospace Technology (INTA) through national founding research projects: DOMINO, SIMUMAT, and CORESIMULAERO; in line with the activities carried out by the Methods and Tools and Flight Physics department at Airbus and the Group for Aeronautical Research and Technology in Europe (GARTEUR) action group AG/52.
Libraries Transforming Communities: The Value in an Academic Library Community at Lincoln University
Resumo:
Inman E. Page Library is coined as an, “Information Mall.” It houses special collections, archives, general reference services, computers, artistic programming, technological resources and space for different types of events. It is a modern academic library in the 21st century that was built on a legacy of scholarly opportunities for Lincoln University students, faculty, and our community in Jefferson City, MO and surrounding cities. The value that needs to be placed on this library is that it is an institution within an institution and should be given top priority as it pertains to continued funding, faculty support, and a place of higher learning that has a library etiquette. As well as, students need to understand the importance of how a library will affect their academic careers.
Resumo:
Information literacy is the set of research skills needed to access, retrieve, and analyze information. By creating an information literacy plan and an online toolkit that the entire campus uses for research purposes, faculty and students will be equipped with the necessary tools to become better researchers, understand the importance of citing information and the significance of searching for peer-reviewed articles.
Resumo:
The arginine-rich motif provides a versatile framework for RNA recognition in which few amino acids other than arginine are needed to mediate specific binding. Using a mammalian screening system based on transcriptional activation by HIV Tat, we identified novel arginine-rich peptides from combinatorial libraries that bind tightly to the Rev response element of HIV. Remarkably, a single glutamine, but not asparagine, within a stretch of polyarginine can mediate high-affinity binding. These results, together with the structure of a Rev peptide-Rev response element complex, suggest that the carboxamide groups of glutamine or asparagine are well-suited to hydrogen bond to G-A base pairs and begin to establish an RNA recognition code for the arginine-rich motif. The screening approach may provide a relatively general method for screening expression libraries in mammalian cells.