878 resultados para Bone fracture healing
Resumo:
Background Flexor tenotomy is a minimally invasive surgical alternative for the treatment of neuropathic diabetic foot ulcers on the distal end of the toe. The influence of infection on healing and time to heal after flexor tenotomy is unknown. Flexor tenotomy can also be used as a prophylactic treatment. The effectiveness as a prophylactic treatment has not been described before. Methods A retrospective study was performed with the inclusion of all consecutive flexor tenotomies from one hospital between January 2005 and December 2011. Results From 38 ulcers, 35 healed (92%), with a mean time to heal of 22 ± 26 days. The longest duration for healing was found for infected ulcers that were penetrating to bone (35 days; p = .042). Cases of prophylactic flexor tenotomies (n=9) did not result in any ulcer or other complications during follow-up. Conclusions The results of this study suggest that flexor tenotomy may be beneficial for neuropathic diabetic foot ulcers on the distal end of the toe, with a high healing percentage and a short mean time to heal. Infected ulcers that penetrated to bone took a significantly longer time to heal. Prospective research, to confirm the results of this retrospective study, should be performed.
Resumo:
The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.
Resumo:
Fatigue fracture is an overuse injury commonly encountered in military and sports medicine, and known to relate to intensive or recently intensified physical activity. Bone responds to increased stress by enhanced remodeling. If physical stress exceeds bone s capability to remodel, accumulation of microfractures can lead to bone fatigue and stress fracture. Clinical diagnosis of stress fractures is complex and based on patient s anamnesis and radiological imaging. Bone stress fractures are mostly low-risk injuries, healing well after non-operative management, yet, occurring in high-risk areas, stress fractures can progress to displacement, often necessitating surgical treatment and resulting in prolonged morbidity. In the current study, the role of vitamin D as a predisposing factor for fatigue fractures was assessed using serum 25OHD level as the index. The average serum 25OHD concentration was significantly lower in conscripts with fatigue fracture than in controls. Evaluating TRACP-5b bone resorption marker as indicator of fatigue fractures, patients with elevated serum TRACP-5b levels had eight times higher probability of sustaining a stress fracture than controls. Among the 154 patients with exercise induced anterior lower leg pain and no previous findings on plain radiography, MRI revealed a total of 143 bone stress injuries in 86 patients. In 99% of the cases, injuries were in the tibia, 57% in the distal third of the tibial shaft. In patients with injury, forty-nine (57%) patients exhibited bilateral stress injuries. In a 20-year follow-up, the incidence of femoral neck fatigue fractures prior to the Finnish Defence Forces new regimen in 1986 addressing prevention of these fractures was 20.8/100,000, but rose to 53.2/100,000 afterwards, a significant 2.6-fold increase. In nineteen subjects with displaced femoral neck fatigue fractures, ten early local complications (in first postoperative year) were evident, and after the first postoperative year, osteonecrosis of the femoral head in six and osteoarthritis of the hip in thirteen patients were found. It seems likely that low vitamin D levels are related to fatigue fractures, and that an increasing trend exists between TRACP-5b bone resorption marker elevation and fatigue fracture incidence. Though seldom detected by plain radiography, fatigue fractures often underlie unclear lower leg stress-related pain occurring in the distal parts of the tibia. Femoral neck fatigue fractures, when displaced, lead to long-term morbidity in a high percentage of patients, whereas, when non-displaced, they do not predispose patients to subsequent adverse complications. Importantly, an educational intervention can diminish the incidence of fracture displacement by enhancing awareness and providing instructions for earlier diagnosis of fatigue fractures.
Resumo:
Osteoporosis is a skeletal disorder characterized by compromised bone strength that predisposes to increased fracture risk. Childhood and adolescence are critical periods for bone mass gain. Peak bone mass is mostly acquired by the age of 18 years and is an important determinant of adult bone health and lifetime risk for fractures. Medications, especially glucocorticoids (GCs), chronic inflammation, decreased physical activity, hormonal deficiencies, delayed puberty, and poor nutrition may predispose children and adolescents with a chronic disease to impaired bone health. In this work, we studied overall bone health, the incidence and prevalence of fractures in children and adolescents who were treated for juvenile idiopathic arthritis (JIA) or had undergone solid organ transplantation. The first study cohort included 62 patients diagnosed with JIA and treated with GCs. The epidemiology of fractures after transplantation was investigated in 196 patients and a more detailed analysis of bone health determinants was performed on 40 liver (LTx) and 106 renal (RTx) transplantation patients. Bone mineral density (BMD) and vertebral morphology were assessed by dual-energy x-ray absorptiometry. Standard radiographs were obtained to detect vertebral fractures and to determine bone age; BMD values were adjusted for skeletal maturity. Our study showed that median BMD values were subnormal in all patient cohorts. The values were highest in patients with JIA and lowest in patients with LTx. Age at transplantation influenced BMD values in LTx but not RTx patients; BMD values were higher in patients who had LTx before the age of two years. BMD was lowest during the immediate posttransplantation years and increased subnormally during puberty. Delayed skeletal maturation was common in all patient groups. The prevalence of vertebral fractures ranged from 10% to 19% in the cohorts. Most of the fractures were asymptomatic and diagnosed only at screening. Vertebral fractures were most common in LTx patients. Vitamin D deficiency was common in all patient groups, and only 3% of patients with JIA and 25% of transplantation patients were considered to have adequate serum vitamin D levels. The total cumulative weight-adjusted dose of GC was not associated with BMD values in JIA or LTx patients. The combination of female gender and age over 15 years, parathyroid hormone concentration over 100 ng/L, and cumulative weight-adjusted methylprednisolone dose over 150 mg/kg during the three preceding years were found to be important predictors for low lumbar spine BMD in RTx patients. Based on the high prevalence of osteoporosis in the study cohorts more efforts should be put to prevention and early diagnosis of osteoporosis in these pediatric patients.
Resumo:
This work reports the processing-microstructure-property correlation of novel HA-BaTiO3-based piezobiocomposites, which demonstrated the bone-mimicking functional properties. A series of composites of hydroxyapatite (HA) with varying amounts of piezoelectric BaTiO3 (BT) were optimally processed using uniquely designed multistage spark plasma sintering (SPS) route. Transmission electron microscopy imaging during in situ heating provides complementary information on the real-time observation of sintering behavior. Ultrafine grains (0.50m) of HA and BT phases were predominantly retained in the SPSed samples. The experimental results revealed that dielectric constant, AC conductivity, piezoelectric strain coefficient, compressive strength, and modulus values of HA-40wt% BT closely resembles with that of the natural bone. The addition of 40wt% BT enhances the long-crack fracture toughness, compressive strength, and modulus by 132%, 200%, and 165%, respectively, with respect to HA. The above-mentioned exceptional combination of functional properties potentially establishes HA-40wt% BT piezocomposite as a new-generation composite for orthopedic implant applications.
Resumo:
The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.
Resumo:
The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanners. In this paper, we present a novel technique that is capable of producing unbiased thickness estimates down to 0.3mm. The technique relies on a mathematical model of the anatomy and the imaging system, which is fitted to the data at a large number of sites around the proximal femur, producing around 17,000 independent thickness estimates per specimen. In a series of experiments on 16 cadaveric femurs, estimation errors were measured as -0.01+/-0.58mm (mean+/-1std.dev.) for cortical thicknesses in the range 0.3-4mm. This compares with 0.25+/-0.69mm for simple thresholding and 0.90+/-0.92mm for a variant of the 50% relative threshold method. In the clinically relevant sub-millimetre range, thresholding increasingly fails to detect the cortex at all, whereas the new technique continues to perform well. The many cortical thickness estimates can be displayed as a colour map painted onto the femoral surface. Computation of the surfaces and colour maps is largely automatic, requiring around 15min on a modest laptop computer.
Resumo:
Fracture appearance, surface and nanomechanics properties of antibacterial ceramics contairing rare earth phosphate composite antibacterial materials were characterized and measured by SEM, AFM and Nanoindenter, respectively. Results show that grain of fracture surface of antibacterial ceramics grows uniform refinement topography of bubble break-up appears at the surface, which is flat and has liquid character, by adding the phosphate composite containing rare earth, nevertheless needle-like crystal and granular outgrowth form at fracture surface and surface of common ceramics, respectively. Young's modulus of antibacterial ceramic film is 74. 397 GPa and hardness is 8. 134 GPa, which increses by 4.4﹪ and 1.6﹪ comparing with common ceramics, respectively. Loading curves of two kind of ceramics have obvious nonlinear character under 700 nm and linear character between 700 ~ 1000 nm, and unloading curve have obvious linear character.
Resumo:
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.
Resumo:
Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to the specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and microdamage removed minimizing the risk of fracture. Bone remodelling is controlled by mechanical and metabolical stimuli. In this paper, we introduce a new model of bone remodelling that takes into account both types of influences. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation, while, in overloading, decreases unless the damage rate is so high that causes resorption and "stress fracture". This model has been employed to predict bone adaptation in the proximal femur after total hip replacement proving its consistence and good correspondence with well-known clinical experiences.
Resumo:
The complications of impaction bone grafting in revision hip replacement includes fracture of he femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability. We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability. © 2007 British Editorial Society of Bone and Joint Surgery.
Precise 3D localisation of a cortical thinning defect associated with femoral neck fracture in life.
Resumo:
BACKGROUND: Individuals with osteoporosis are predisposed to hip fracture during trips, stumbles or falls, but half of all hip fractures occur in those without generalised osteoporosis. By analysing ordinary clinical CT scans using a novel cortical thickness mapping technique, we discovered patches of markedly thinner bone at fracture-prone regions in the femurs of women with acute hip fracture compared with controls. METHODS: We analysed CT scans from 75 female volunteers with acute fracture and 75 age- and sex-matched controls. We classified the fracture location as femoral neck or trochanteric before creating bone thickness maps of the outer 'cortical' shell of the intact contra-lateral hip. After registration of each bone to an average femur shape and statistical parametric mapping, we were able to visualise and quantify statistically significant foci of thinner cortical bone associated with each fracture type, assuming good symmetry of bone structure between the intact and fractured hip. The technique allowed us to pinpoint systematic differences and display the results on a 3D average femur shape model. FINDINGS: The cortex was generally thinner in femoral neck fracture cases than controls. More striking were several discrete patches of statistically significant thinner bone of up to 30%, which coincided with common sites of fracture initiation (femoral neck or trochanteric). INTERPRETATION: Femoral neck fracture patients had a thumbnail-sized patch of focal osteoporosis at the upper head-neck junction. This region coincided with a weak part of the femur, prone to both spontaneous 'tensile' fractures of the femoral neck, and as a site of crack initiation when falling sideways. Current hip fracture prevention strategies are based on case finding: they involve clinical risk factor estimation to determine the need for single-plane bone density measurement within a standard region of interest (ROI) of the femoral neck. The precise sites of focal osteoporosis that we have identified are overlooked by current 2D bone densitometry methods.