941 resultados para Blast traumatic brain injury
Resumo:
Abstract Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.
Resumo:
Purpose: The aim of this educational poster is to introduce the technical principles of cerebral perfusion CT and to provide examples of its clinical applications and potential limitations in the everyday emergency practice. Methods and materials: Cerebral perfusion CT is a well established investigatory tool for many vascular and parenchymal brain dysfunctions. CT perfusion maps allow a semiquantitative assessment of cerebral perfusion. Results: Currently, cerebral perfusion CT has a pivotal role in differentiating reversible from irreversible ischemic parenchymal insult besides its integral role in grading vasospasm after subarachnoid hemorrhage. Furthermore, cerebral perfusion CT can be coupled to acetazolamide administration in order to assess the cerebrovascular reserve capacity before performing extra-/intra-cranial bypass surgery in patients with cerebral vascular insufficiency. Cerebral perfusion CT can also identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS in order to predict the final outcome regarding the late occurrence of irreversible parenchymal damage. Cerebral Perfusion CT is also able to detect focal parenchymal perfusion abnormalities in acute epileptic seizures. Conclusion: Cerebral perfusion CT can be integrated in the management of many vascular, traumatic and functional disorders of the brain.
Resumo:
OBJECTIVE: To examine whether a caregiver's attachment style is associated with patient cognitive trajectory after traumatic brain injury (TBI). SETTING: National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. PARTICIPANTS: Forty Vietnam War veterans with TBI and their caregivers. MAIN OUTCOME MEASURE: Cognitive performance, measured by the Armed Forces Qualification Test percentile score, completed at 2 time points: preinjury and 40 years postinjury. DESIGN: On the basis of caregivers' attachment style (secure, fearful, preoccupied, dismissing), participants with TBI were grouped into a high or low group. To examine the association between cognitive trajectory of participants with TBI and caregivers' attachment style, we ran four 2 × 2 analysis of covariance on cognitive performances. RESULTS: After controlling for other factors, cognitive decline was more pronounced in participants with TBI with a high fearful caregiver than among those with a low fearful caregiver. Other attachment styles were not associated with decline. CONCLUSION AND IMPLICATION: Caregiver fearful attachment style is associated with a significant decline in cognitive status after TBI. We interpret this result in the context of the neural plasticity and cognitive reserve literatures. Finally, we discuss its impact on patient demand for healthcare services and potential interventions.
Resumo:
INTRODUCTION. Both hypocapnia and hypercapnia can be deleterious to brain injured patients. Strict PaCO2 control is difficult to achieve because of patient's instability and unpredictable effects of ventilator settings changes. OBJECTIVE. The aim of this study was to evaluate our ability to comply with a protocol of controlled mechanical ventilation (CMV) aiming at a PaCO2 between 35 and 40 mmHg in patients requiring neuro-resuscitation. METHODS. Retrospective analysis of consecutive patients (2005-2011) requiring intracranial pressure (ICP) monitoring for traumatic brain injury (TBI), subarachnoid haemorrhage (SAH), intracranial haemorrhage (ICH) or ischemic stroke (IS). Demographic data, GCS, SAPS II, hospital mortality, PaCO2 and ICP values were recorded. During CMV in the first 48 h after admission, we analyzed the time spent within the PaCO2 target in relation to the presence or absence of intracranial hypertension (ICP[20 mmHg, by periods of 30 min) (Table 1). We also compared the fraction of time (determined by linear interpolation) spent with normal, low or high PaCO2 in hospital survivors and non-survivors (Wilcoxon, Bonferroni correction, p\0.05) (Table 2). PaCO2 samples collected during and after apnoea tests were excluded. Results given as median [IQR]. RESULTS. 436 patients were included (TBI: 51.2 %, SAH: 20.6 %, ICH: 23.2 %, IS: 5.0 %), age: 54 [39-64], SAPS II score: 52 [41-62], GCS: 5 [3-8]. 8744 PaCO2 samples were collected during 150611 h of CMV. CONCLUSIONS. Despite a high number of PaCO2 samples collected (in average one sample every 107 min), our results show that patients undergoing CMV for neuro- resuscitation spent less than half of the time within the pre-defined PaCO2 range. During documented intracranial hypertension, hypercapnia was observed in 17.4 % of the time. Since non-survivors spent more time with hypocapnia, further analysis is required to determine whether hypocapnia was detrimental per se, or merely reflects increased severity of brain insult.
Resumo:
Neuropsychology is a scientific discipline, born in the XIX century, and bridges the fields of neurology and psychology. Neuropsychologists apply scientific knowledge about the relationship between brain function and mental performances. The major clinical role of a neuropsychological evaluation is to help to establish medical and functional diagnosis in patients (adults or infants) with different neurological pathologies such as stroke, traumatic brain injury, dementia, epilepsy.... Such analysis necessitates accurate observation of behaviour and administration of tests of mental abilities (e.g. language, memory...). Test results can also help to clarify the nature of cognitive difficulties and to support the formulation of plans for neuropsychological therapy and functional adjustment in every day life.
Resumo:
La tècnica de la microdiàlisis cerebral (MDC) és un instrument que proporciona informació rellevant en la monitorització del metabolisme cerebral en els pacients neurocrítics. El lactat i l’índex lactat-piruvat (ILP) són dos marcadors utilitzats per a la detecció de la hipòxia cerebral en pacients que han patit un traumatisme cranioencefàlic (TCE). Aquests dos marcadors poden estar anormalment elevats en circumstàncies que no cursen amb hipòxia tissular. Per una altra banda la recent aparició dels catèters de MDC amb porus de major mida denominats d’”alta resolució”, permet ampliar el rang de molècules que es poden detectar en el dialitzat. Objectius: 1) descriure les característiques del metabolisme energètic cerebral que s’observa en la fase aguda dels pacients que han patit un TCE en base als dos indicadors del metabolisme anaeròbic: lactat i ILP, i 2) determinar la recuperació relativa (RR) de les molècules implicades en la resposta neuroinflamatòria: de IL-1β, IL- 6, IL-8 i IL-10. Material i mètodes: Es van seleccionar 46 pacients d’una cohort de pacients amb TCE moderat o greu ingressats a la Unitat de Cures Intensives de l’Hospital Universitari de la Vall d’Hebron i monitoritzats amb MDC. Es van analitzar els nivells de lactat i ILP i es va correlacionar amb els nivells de PtiO2. Es van realitzar experiments in vitro per estudiar la recuperació de les membranes de 100 KDa per tal de poder interpretar posteriorment els nivells reals de les molècules estudiades en l’espai extracel•lular del teixit cerebral. Resultats: La concordança entre el lactat i l’índex LP per a determinar episodis de disfunció metabòlica va ser dèbil (índex de kappa = 0,36, IC 95%: 0,34-0,39). Més del 80% dels casos en què el lactat i l’índex LP es trobaven incrementats, els valors de la PtiO2 es van trobar dins els rangs de normalitat (PtiO2&15mmHg). La recuperació de les citoquines a través de la membrana de microdiàlisis va ser menor de l’esperat tenint en compte la mida dels porus de la membrana. Conclusions: el lactat i l’índex LP elevats va ser una troballa freqüent després d’un TCE i no es va relacionar, en la majoria de casos, amb episodis d’hipòxia tissular. Per un altra part la mida del porus de la membrana no és l’únic paràmetre indicador de la RR de macromolècules.
Resumo:
Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.
Resumo:
OBJECTIVES: Recommendations for EEG monitoring in the ICU are lacking. The Neurointensive Care Section of the ESICM assembled a multidisciplinary group to establish consensus recommendations on the use of EEG in the ICU. METHODS: A systematic review was performed and 42 studies were included. Data were extracted using the PICO approach, including: (a) population, i.e. ICU patients with at least one of the following: traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage, stroke, coma after cardiac arrest, septic and metabolic encephalopathy, encephalitis, and status epilepticus; (b) intervention, i.e. EEG monitoring of at least 30 min duration; (c) control, i.e. intermittent vs. continuous EEG, as no studies compared patients with a specific clinical condition, with and without EEG monitoring; (d) outcome endpoints, i.e. seizure detection, ischemia detection, and prognostication. After selection, evidence was classified and recommendations developed using the GRADE system. RECOMMENDATIONS: The panel recommends EEG in generalized convulsive status epilepticus and to rule out nonconvulsive seizures in brain-injured patients and in comatose ICU patients without primary brain injury who have unexplained and persistent altered consciousness. We suggest EEG to detect ischemia in comatose patients with subarachnoid hemorrhage and to improve prognostication of coma after cardiac arrest. We recommend continuous over intermittent EEG for refractory status epilepticus and suggest it for patients with status epilepticus and suspected ongoing seizures and for comatose patients with unexplained and persistent altered consciousness. CONCLUSIONS: EEG monitoring is an important diagnostic tool for specific indications. Further data are necessary to understand its potential for ischemia assessment and coma prognostication.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
Traumatic brain injury (TBI) is recognized as a cause of hypopituitarism even after mild TBI. Although over the past decade, a growing body of research has detailed neuroendocrine changes induced by TBI, the mechanisms and risk factors responsible for this pituitary dysfunction are still unclear. Around the world, sports-especially combative sports-are very popular. However, sports are not generally considered as a cause of TBI in most epidemiological studies, and the link between sports-related head trauma and hypopituitarism has not been investigated until recently. Thus, there is a paucity of data regarding this important concern. Because of the large number of young sports participants with near-normal life expectancy, the implications of undiagnosed or untreated postconcussion pituitary dysfunction can be dramatic. Understanding the pathophysiological mechanisms and risk factors of hypopituitarism caused by sports injuries is thus an important issue that concerns both medical staff and sponsors of sports. The aim of this paper was to summarize the best evidence for understanding the pathophysiological mechanisms and to discuss the current data and recommendations on sports-related head trauma as a cause of hypopituitarism.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
Disorders of language, spatial perception, attention, memory, calculation and praxis are a frequent consequence of acquired brain damage [in particular, stroke and traumatic brain injury (TBI)] and a major determinant of disability. The rehabilitation of aphasia and, more recently, of other cognitive disorders is an important area of neurological rehabilitation. We report here a review of the available evidence about effectiveness of cognitive rehabilitation. Given the limited number and generally low quality of randomized clinical trials (RCTs) in this area of therapeutic intervention, the Task Force considered, besides the available Cochrane reviews, evidence of lower classes which was critically analysed until a consensus was reached. In particular, we considered evidence from small group or single cases studies including an appropriate statistical evaluation of effect sizes. The general conclusion is that there is evidence to award a grade A, B or C recommendation to some forms of cognitive rehabilitation in patients with neuropsychological deficits in the post-acute stage after a focal brain lesion (stroke, TBI). These include aphasia therapy, rehabilitation of unilateral spatial neglect (ULN), attentional training in the post-acute stage after TBI, the use of electronic memory aids in memory disorders, and the treatment of apraxia with compensatory strategies. There is clearly a need for adequately designed studies in this area, which should take into account specific problems such as patient heterogeneity and treatment standardization.
Resumo:
Postoperative care of major neurosurgical procedures is aimed at the prevention, detection and treatment of secondary brain injury. This consists of a series of pathological events (i.e. brain edema and intracranial hypertension, cerebral hypoxia/ischemia, brain energy dysfunction, non-convulsive seizures) that occur early after the initial insult and surgical intervention and may add further burden to primary brain injury and thus impact functional recovery. Management of secondary brain injury requires specialized neuroscience intensive care units (ICU) and continuous advanced monitoring of brain physiology. Monitoring of intracranial pressure (ICP) is a mainstay of care and is recommended by international guidelines. However, ICP monitoring alone may be insufficient to detect all episodes of secondary brain insults. Additional invasive (i.e. brain tissue PO2, cerebral microdialysis, regional cerebral blood flow) and non-invasive (i.e. transcranial doppler, near-infrared spectroscopy, EEG) brain monitoring devices might complement ICP monitoring and help clinicians to target therapeutic interventions (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Several independent studies demonstrate such multimodal approach may optimize patient care after major neurosurgical procedures. The aim of this review is to evaluate some of the available monitoring systems and summarize recent important data showing the clinical utility of multimodal neuromonitoring for the management of main acute neurosurgical conditions, including traumatic brain injury, subarachnoid hemorrhage and stroke.
Resumo:
Purpose: To assess the value of cerebral perfusion CT (PCT) in children with traumatic brain injury in prediciting their consecutive clinical outcome. Materials and methods: Twelve paediatric patients with acute traumatic brain injury underwent cerebral CT coupled with PCT during their admission at the emergency room (ER). PCT maps were reviewed for mean transit time (MTT), regional cerebral blood flow (rCBF) and regional cerebral blood volume (rCBV) abnormalities. PCT results were compared to short- and mid-term clinical outcome. Results: 3 patients with low Glasgow Coma Scale (GCS) (98) and bad clinical outcome showed an increased MTT and decreased rCBV and rCBF. 5 patients with low GCS and good clinical outcome showed an increased MTT without abnormalities of rCBV and rCBF. In patients with GCS 08 and good outcome, PCT maps were normal in 2 cases; transient PCT abnormalities were identified in one case with an embedded fracture of the skull and in one case with an epileptic seizure. Conclusion: Cerebral PCT can identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS and a bad outcome. PCT can be a valuable tool to predict the severity of the prognosis of these patients as soon as they are evaluated by CT-scan during their admission at the ER.
Resumo:
PURPOSE OF REVIEW: To review recent clinical data and summarize actual recommendations for the management of electrographic seizures and status epilepticus in neuro-ICU patients. RECENT FINDINGS: Electrographic, 'nonconvulsive', seizures are frequent in neuro-ICU patients including traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage and hypoxic-ischemic encephalopathy. Continuous electroencephalography monitoring is thus of great potential utility. The impact of electrographic seizures on outcome however is not entirely established and it is also unclear what type of electroencephalography paroxysms require treatment and when and how exactly to treat them. Evidence from randomized studies is lacking and will not be available in the near future. Given robust animal and human evidence showing the potential negative impact of seizures on secondary cerebral damage and outcome, treatment of seizures appears reasonable, particularly if related to status epilepticus. On the contrary, over-aggressive antiepileptic therapy entails risks. The management of seizures should therefore be guided individually, based on the underlying cause, the severity of illness and patient comorbidities. SUMMARY: We provide a pragmatic approach for the management of electrographic seizures in neuro-ICU patients. International consensus guidelines on continuous electroencephalography monitoring and seizure therapy are needed and would represent the rationale for a future multicenter randomized trial.