938 resultados para Biomedical signal processing
Resumo:
Acute life threatening events such as cardiac/respiratory arrests are often predictable in adults and children. However critical events such as unplanned extubations are considered as not predictable. This paper seeks to evaluate the ability of automated prediction systems based on feature space embedding and time series methods to predict unplanned extubations in paediatric intensive care patients. We try to exploit the trends in the physiological signals such as Heart Rate, Respiratory Rate, Systolic Blood Pressure and Oxygen saturation levels in the blood using signal processing aspects of a frame-based approach of expanding signals using a nonorthogonal basis derived from the data. We investigate the significance of the trends in a computerised prediction system. The results are compared with clinical observations of predictability. We will conclude by investigating whether the prediction capability of the system could be exploited to prevent future unplanned extubations. © 2014 IEEE.
Resumo:
Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by means of i)forward steps for the upgrading of an approximation and/or ii) backward steps for the corresponding downgrading. The advantage of the strategy is illustrated by approximation of music signals using redundant trigonometric dictionaries. In addition to rendering stunning improvements in sparsity with respect to the concomitant trigonometric basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier Transform
Resumo:
The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^
Resumo:
Atrial fibrillation (AF) is a major global health issue as it is the most prevalent sustained supraventricular arrhythmia. Catheter-based ablation of some parts of the atria is considered an effective treatment of AF. The main objective of this research is to analyze atrial intracardiac electrograms (IEGMs) and extract insightful information for the ablation therapy. Throughout this thesis we propose several computationally efficient algorithms that take streams of IEGMs from different atrial sites as the input signals, sequentially analyze them in various domains (e.g., time and frequency), and create color-coded three-dimensional map of the atria to be used in the ablation therapy.
Resumo:
With security and surveillance, there is an increasing need to process image data efficiently and effectively either at source or in a large data network. Whilst a Field-Programmable Gate Array (FPGA) has been seen as a key technology for enabling this, the design process has been viewed as problematic in terms of the time and effort needed for implementation and verification. The work here proposes a different approach of using optimized FPGA-based soft-core processors which allows the user to exploit the task and data level parallelism to achieve the quality of dedicated FPGA implementations whilst reducing design time. The paper also reports some preliminary
progress on the design flow to program the structure. An implementation for a Histogram of Gradients algorithm is also reported which shows that a performance of 328 fps can be achieved with this design approach, whilst avoiding the long design time, verification and debugging steps associated with conventional FPGA implementations.
Resumo:
In this work, a platform to the conditioning, digitizing, visualization and recording of the EMG signals was developed. After the acquisition, the analysis can be done by signal processing techniques. The platform consists of two modules witch acquire electromyography (EMG) signals by surface electrodes, limit the interest frequency band, filter the power grid interference and digitalize the signals by the analogue-to- digital converter of the modules microcontroller. Thereby, the data are sent to the computer by the USB interface by the HID specification, displayed in real-time in graphical form and stored in files. As processing resources was implemented the operations of signal absolute value, the determination of effective value (RMS), Fourier analysis, digital filter (IIR) and the adaptive filter. Platform initial tests were performed with signal of lower and upper limbs with the aim to compare the EMG signal laterality. The open platform is intended to educational activities and academic research, allowing the addition of other processing methods that the researcher want to evaluate or other required analysis.
Resumo:
Forensic speaker comparison exams have complex characteristics, demanding a long time for manual analysis. A method for automatic recognition of vowels, providing feature extraction for acoustic analysis is proposed, aiming to contribute as a support tool in these exams. The proposal is based in formant measurements by LPC (Linear Predictive Coding), selectively by fundamental frequency detection, zero crossing rate, bandwidth and continuity, with the clustering being done by the k-means method. Experiments using samples from three different databases have shown promising results, in which the regions corresponding to five of the Brasilian Portuguese vowels were successfully located, providing visualization of a speaker’s vocal tract behavior, as well as the detection of segments corresponding to target vowels.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.
Resumo:
International audience