982 resultados para Biology, Bioinformatics|Computer Science
Resumo:
There is a national need to increase the STEM-related workforce. Among factors leading towards STEM careers include the number of advanced high school mathematics and science courses students complete. Florida's enrollment patterns in STEM-related Advanced Placement (AP) courses, however, reveal that only a small percentage of students enroll into these classes. Therefore, screening tools are needed to find more students for these courses, who are academically ready, yet have not been identified. The purpose of this study was to investigate the extent to which scores from a national standardized test, Preliminary Scholastic Assessment Test/ National Merit Qualifying Test (PSAT/NMSQT), in conjunction with and compared to a state-mandated standardized test, Florida Comprehensive Assessment Test (FCAT), are related to selected AP exam performance in Seminole County Public Schools. An ex post facto correlational study was conducted using 6,189 student records from the 2010 - 2012 academic years. Multiple regression analyses using simultaneous Full Model testing showed differential moderate to strong relationships between scores in eight of the nine AP courses (i.e., Biology, Environmental Science, Chemistry, Physics B, Physics C Electrical, Physics C Mechanical, Statistics, Calculus AB and BC) examined. For example, the significant unique contribution to overall variance in AP scores was a linear combination of PSAT Math (M), Critical Reading (CR) and FCAT Reading (R) for Biology and Environmental Science. Moderate relationships for Chemistry included a linear combination of PSAT M, W (Writing) and FCAT M; a combination of FCAT M and PSAT M was most significantly associated with Calculus AB performance. These findings have implications for both research and practice. FCAT scores, in conjunction with PSAT scores, can potentially be used for specific STEM-related AP courses, as part of a systematic approach towards AP course identification and placement. For courses with moderate to strong relationships, validation studies and development of expectancy tables, which estimate the probability of successful performance on these AP exams, are recommended. Also, findings established a need to examine other related research issues including, but not limited to, extensive longitudinal studies and analyses of other available or prospective standardized test scores.
Resumo:
Il lavoro presentato in questa tesi è stato svolto presso il Department of Computer Science, University of Oxford, durante il mio periodo all’estero nel Computational Biology Group. Scopo del presente lavoro è stato lo sviluppo di un modello matematico del potenziale d’azione per cellule umane cardiache di Purkinje. Tali cellule appartengono al sistema di conduzione elettrico del cuore, e sono considerate molto importanti nella genesi di aritmie. Il modello, elaborato in linguaggio Matlab, è stato progettato utilizzando la tecnica delle Popolazione di Modelli, un innovativo approccio alla modellazione cellulare sviluppato recentemente proprio dal Computational Biology Group. Tale modello è stato sviluppato in 3 fasi: • Inizialmente è stato sviluppato un nuovo modello matematico di cellula umana del Purkinje cardiaco, tenendo in considerazione i modelli precedenti disponibili in letteratura e le più recenti pubblicazioni in merito alle caratteristiche elettrofisiologiche proprie della cellula cardiaca umana di Purkinje. Tale modello è stato costruito a partire dall’attuale gold standard della modellazione cardiaca ventricolare umana, il modello pubblicato da T. O’Hara e Y. Rudy nel 2011, modificandone sia le specifiche correnti ioniche che la struttura interna cellulare. • Il modello così progettato è stato, poi, utilizzato come “modello di base” per la costruzione di una popolazione di 3000 modelli, tramite la variazione di alcuni parametri del modello all’interno di uno specifico range. La popolazione così generata è stata calibrata sui dati sperimentali di cellule umane del Purkinje. A valle del processo di calibrazione si è ottenuta una popolazione di 76 modelli. • A partire dalla popolazione rimanente, è stato ricavato un nuovo modello ai valori medi, che riproduce le principali caratteristiche del potenziale d’azione di una cellula di Purkinje cardiaca umana, e che rappresenta il dataset sperimentale utilizzato nel processo di calibrazione.
Resumo:
The authors thank M. C. Romano, I. Stansfield, L. Ciandrini, A. Kort, and M. Rehberg for helpful discussions. This work was funded by BBSRC grants BB/F00513/X1 and BB/G010722, and the Scottish Universities Life Science Alliance (SULSA).
Resumo:
The authors thank M. C. Romano, I. Stansfield, L. Ciandrini, A. Kort, and M. Rehberg for helpful discussions. This work was funded by BBSRC grants BB/F00513/X1 and BB/G010722, and the Scottish Universities Life Science Alliance (SULSA).
Resumo:
Postprint
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.
Resumo:
Stealthy attackers move patiently through computer networks - taking days, weeks or months to accomplish their objectives in order to avoid detection. As networks scale up in size and speed, monitoring for such attack attempts is increasingly a challenge. This paper presents an efficient monitoring technique for stealthy attacks. It investigates the feasibility of proposed method under number of different test cases and examines how design of the network affects the detection. A methodological way for tracing anonymous stealthy activities to their approximate sources is also presented. The Bayesian fusion along with traffic sampling is employed as a data reduction method. The proposed method has the ability to monitor stealthy activities using 10-20% size sampling rates without degrading the quality of detection.
Resumo:
The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
Abstract Heading into the 2020s, Physics and Astronomy are undergoing experimental revolutions that will reshape our picture of the fabric of the Universe. The Large Hadron Collider (LHC), the largest particle physics project in the world, produces 30 petabytes of data annually that need to be sifted through, analysed, and modelled. In astrophysics, the Large Synoptic Survey Telescope (LSST) will be taking a high-resolution image of the full sky every 3 days, leading to data rates of 30 terabytes per night over ten years. These experiments endeavour to answer the question why 96% of the content of the universe currently elude our physical understanding. Both the LHC and LSST share the 5-dimensional nature of their data, with position, energy and time being the fundamental axes. This talk will present an overview of the experiments and data that is gathered, and outlines the challenges in extracting information. Common strategies employed are very similar to industrial data! Science problems (e.g., data filtering, machine learning, statistical interpretation) and provide a seed for exchange of knowledge between academia and industry. Speaker Biography Professor Mark Sullivan Mark Sullivan is a Professor of Astrophysics in the Department of Physics and Astronomy. Mark completed his PhD at Cambridge, and following postdoctoral study in Durham, Toronto and Oxford, now leads a research group at Southampton studying dark energy using exploding stars called "type Ia supernovae". Mark has many years' experience of research that involves repeatedly imaging the night sky to track the arrival of transient objects, involving significant challenges in data handling, processing, classification and analysis.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
We present an Integrated Environment suitable for learning and teaching computer programming which is designed for both students of specialised Computer Science courses, and also non-specialist students such as those following Liberal Arts. The environment is rich enough to allow exploration of concepts from robotics, artificial intelligence, social science, and philosophy as well as the specialist areas of operating systems and the various computer programming paradigms.