426 resultados para Biofuel
Resumo:
El aumento de la plantación de diversos cultivos destinados a la producción de biocombustibles representa en muchos territorios, principalmente en aquellos destinados a la agricultura y a la ganadería, un conflicto socioeconómico de excepcional relevancia, lo cual conlleva cambios profundos tanto en la evolución del paisaje como en la articulación del territorio. Con ello se pretende contribuir al debate sobre las repercusiones territoriales de los biocombustibles en el medio rural y en sus consecuencias socioeconómicas a diversas escalas.
Resumo:
Like other regions of the world, the EU is developing biofuels in the transport sector to reduce oil consumption and mitigate climate change. To promote them, it has adopted favourable legislation since the 2000s. In 2009 it even decided to oblige each Member State to ensure that by 2020 the share of energy coming from renewable sources reached at least 10% of their final consumption of energy in the transport sector. Biofuels are considered the main instrument to reach that percentage since the development of other alternatives (such as hydrogen and electricity) will take much longer than expected. Meanwhile, these various legislative initiatives have driven the production and consumption of biofuels in the EU. Biofuels accounted for 4.7% of EU transport fuel consumption in 2011. They have also led to trade and investment in biofuels on a global scale. This large-scale expansion of biofuels has, however, revealed numerous negative impacts. These stem from the fact that first-generation biofuels (i.e., those produced from food crops), of which the most important types are biodiesel and bioethanol, are used almost exclusively to meet the EU’s renewable 10% target in transport. Their negative impacts are: socioeconomic (food price rises), legal (land-grabbing), environmental (for instance, water stress and water pollution; soil erosion; reduction of biodiversity), climatic (direct and indirect land-use effects resulting in more greenhouse gas emissions) and public finance issues (subsidies and tax relief). The extent of such negative impacts depends on how biofuel feedstocks are produced and processed, the scale of production, and in particular, how they influence direct land use change (DLUC) and indirect land use change (ILUC) and the international trade. These negative impacts have thus provoked mounting debates in recent years, with a particular focus on ILUC. They have forced the EU to re-examine how it deals with biofuels and submit amendments to update its legislation. So far, the EU legislation foresees that only sustainable biofuels (produced in the EU or imported) can be used to meet the 10% target and receive public support; and to that end, mandatory sustainability criteria have been defined. Yet they have a huge flaw. Their measurement of greenhouse gas savings from biofuels does not take into account greenhouse gas emissions resulting from ILUC, which represent a major problem. The Energy Council of June 2014 agreed to set a limit on the extent to which firstgeneration biofuels can count towards the 10% target. But this limit appears to be less stringent than the ones made previously by the European Commission and the European Parliament. It also agreed to introduce incentives for the use of advanced (second- and third-generation) biofuels which would be allowed to count double towards the 10% target. But this again appears extremely modest by comparison with what was previously proposed. Finally, the approach chosen to take into account the greenhouse gas emissions due to ILUC appears more than cautious. The Energy Council agreed that the European Commission will carry out a reporting of ILUC emissions by using provisional estimated factors. A review clause will permit the later adjustment of these ILUC factors. With such legislative orientations made by the Energy Council, one cannot consider yet that there is a major shift in the EU biofuels policy. Bolder changes would have probably meant risking the collapse of the high-emission conventional biodiesel industry which currently makes up the majority of Europe’s biofuel production. The interests of EU farmers would have also been affected. There is nevertheless a tension between these legislative orientations and the new Commission’s proposals beyond 2020. In any case, many uncertainties remain on this issue. As long as solutions have not been found to minimize the important collateral damages provoked by the first generation biofuels, more scientific studies and caution are needed. Meanwhile, it would be wise to improve alternative paths towards a sustainable transport sector, i.e., stringent emission and energy standards for all vehicles, better public transport systems, automobiles that run on renewable energy other than biofuels, or other alternatives beyond the present imagination.
Resumo:
Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. DescribingMFCsystems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.
Resumo:
The overall objective of this work was to compare the effect of pre-treatment and catalysts on the quality of liquid products from fast pyrolysis of biomass. This study investigated the upgrading of bio-oil in terms of its quality as a bio-fuel and/or source of chemicals. Bio-oil used directly as a biofuel for heat or power needs to be improved particularly in terms of temperature sensitivity, oxygen content, chemical instability, solid content, and heating values. Chemicals produced from bio-oil need to be able to meet product specifications for market acceptability. There were two main objectives in this research. The first was to examine the influence of pre-treatment of biomass on the fast pyrolysis process and liquid quality. The relationship between the method of pre-treatment of biomass feedstock to fast pyrolysis oil quality was studied. The thermal decomposition behaviour of untreated and pretreated feedstocks was studied by using a TGA (thermogravimetric analysis) and a Py-GC/MS (pyroprobe-gas chromatography/mass spectrometry). Laboratory scale reactors (100g/h, 300g/h, 1kg/h) were used to process untreated and pretreated feedstocks by fast pyrolysis. The second objective was to study the influence of numerous catalysts on fast pyrolysis liquids from wheat straw. The first step applied analytical pyrolysis (Py-GC/MS) to determine which catalysts had an effect on fast pyrolysis liquid, in order to select catalysts for further laboratory fast pyrolysis. The effect of activation, temperature, and biomass pre-treatment on catalysts were also investigated. Laboratory experiments were also conducted using the existing 300g/h fluidised bed reactor system with a secondary catalytic fixed bed reactor. The screening of catalysts showed that CoMo was a highly active catalyst, which particularly reduced the higher molecular weight products of fast pyrolysis. From these screening tests, CoMo catalyst was selected for larger scale laboratory experiments. With reference to the effect of pre-treatment work on fast pyrolysis process, a significant effect occurred on the thermal decomposition of biomass, as well as the pyrolysis products composition, and the proportion of key components in bio-oil. Torrefaction proved to have a mild influence on pyrolysis products, when compared to aquathermolysis and steam pre-treatment.
Resumo:
A rapid method for the analysis of biomass feedstocks was established to identify the quality of the pyrolysis products likely to impact on bio-oil production. A total of 15 Lolium and Festuca grasses known to exhibit a range of Klason lignin contents were analysed by pyroprobe-GC/MS (Py-GC/MS) to determine the composition of the thermal degradation products of lignin. The identification of key marker compounds which are the derivatives of the three major lignin subunits (G, H, and S) allowed pyroprobe-GC/MS to be statistically correlated to the Klason lignin content of the biomass using the partial least-square method to produce a calibration model. Data from this multivariate modelling procedure was then applied to identify likely "key marker" ions representative of the lignin subunits from the mass spectral data. The combined total abundance of the identified key markers for the lignin subunits exhibited a linear relationship with the Klason lignin content. In addition the effect of alkali metal concentration on optimum pyrolysis characteristics was also examined. Washing of the grass samples removed approximately 70% of the metals and changed the characteristics of the thermal degradation process and products. Overall the data indicate that both the organic and inorganic specification of the biofuel impacts on the pyrolysis process and that pyroprobe-GC/MS is a suitable analytical technique to asses lignin composition. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to support the expanding transportation sector. This multi-step process produces hydrocarbon fuels from biomass, the so-called “second generation biofuels” that, unlike first generation biofuels, have the ability to make use of a wider range of biomass feedstock than just plant oils and sugar/starch components. A BTL process based on gasification has yet to be commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. The scope was limited to hydrocarbon products as these can be readily incorporated and integrated into conventional markets and supply chains. The evaluated BTL systems were based on pressurised oxygen gasification of wood biomass or bio-oil and they were characterised by different fuel synthesis processes including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel synthesis technologies were compared in a single, consistent evaluation. The selected process concepts were modelled using the process simulation software IPSEpro to determine mass balances, energy balances and product distributions. For each BTL concept, a cost model was developed in MS Excel to estimate capital, operating and production costs. An uncertainty analysis based on the Monte Carlo statistical method, was also carried out to examine how the uncertainty in the input parameters of the cost model could affect the output (i.e. production cost) of the model. This was the first time that an uncertainty analysis was included in a published techno-economic assessment study of BTL systems. It was found that bio-oil gasification cannot currently compete with solid biomass gasification due to the lower efficiencies and higher costs associated with the additional thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the BTL systems were competitive with conventional fossil fuel plants. However, if government tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was available, transport biofuels could be competitive with conventional fuels. Large scale biofuel production may be possible in the long term through subsidies, fuels price rises and legislation.
Resumo:
This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.
Resumo:
Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.
Resumo:
The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.
Resumo:
Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.
Resumo:
There is a pressing need for sustainable transportation fuels to combat both climate change and dwindling fossil fuel reserves. Biodiesel, synthesised from non-food plant (e.g., Jatropha curcas) or algal crops is one possible solution, but its energy efficient production requires design of new solid catalysts optimized for the bulky triglyceride and fatty acid feedstocks. Here we report on the synthesis of hierarchical macroporous-mesoporous silica and alumina architectures, and their subsequent functionalization by propylsulfonic acid groups or alkaline earth oxides to generate novel solid acid and base catalysts. These materials possess high surface areas and well-defined, interconnected macro-mesopore networks with respective narrow pore size distributions tuneable around 300 nm and 5 nm. Their high conductivity and improved mass transport characteristics enhance activity towards transesterification of bulky tricaprylin and palmitic acid esterification, over mesoporous analogues. This opens the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion.
Resumo:
Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.
Resumo:
Today, focus is shifting to creation of bio-energy, biofuel and bioproducts from cellulosic biomass derived from various sources, including existing and new crops and their residues, trees and forest residues, and municipal or industrial wastes. At present, biomass co-firing in modern coal power plants with efficiencies up to 45% is the most cost-effective biomass use for power generation. Due to feedstock availability issues, dedicated biomass plants for combined heat and power (CHP), are typically of smaller size and lower electrical efficiency compared to coal plants. The financial model discussed in the chapter is suitable for all countries both in the West and in the developing world. From the economic analysis given in the chapter it can be concluded that intermediate pyrolysis technology proves to be very effective in terms of product qualities of the oil produced and also the return on investment is around 4 to 5 years.
Resumo:
Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.
Resumo:
In this work, it was developed and validated methodologies that were based on the use of Infrared Spectroscopy Mid (MIR) combined with multivariate calibration Square Partial Least (PLS) to quantify adulterants such as soybean oil and residual soybean oil in methyl and ethyl palm biodiesels in the concentration range from 0.25 to 30.00 (%), as well as to determine methyl and ethyl palm biodiesel content in their binary mixtures with diesel in the concentration range from 0.25 to 30.00 (%). The prediction results showed that PLS models constructed are satisfactory. Errors Mean Square Forecast (RMSEP) of adulteration and content determination showed values of 0.2260 (%), with mean error (EM) with values below 1.93 (%). The models also showed a strong correlation between actual and predicted values, staying above 0.99974. No systematic errors were observed, in accordance to ASTM E1655- 05. Thus the built PLS models, may be a promising alternative in the quality control of this fuel for possible adulterations or to content determination.