915 resultados para Bimanual Arm Movements
Resumo:
Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.
Resumo:
Two experiments examined imitation of lateralised body movement sequences presented at six viewing angles (0º, 60º, 120º, 180º, 240º, and 300º rotation relative to the participant’s body). Experiment 1 found that, when participants were instructed simply to ‘‘do what the model does’’, at all viewing angles they produced more actions using the same side of the body as the model (anatomical matches), than actions using the opposite side (anatomical non-matches). In Experiment 2 participants were instructed to produce either anatomical matches or anatomical non-matches of observed actions. When the model was viewed from behind (0º), the anatomically matching group were more accurate than the anatomically non-matching group, but the non-matching group was superior when the model faced the participant (180º and 240º). No reliable differences were observed between groups at 60º, 120º, and 300º. In combination, the results of Experiments 1 and 2 suggest that, when they are confronting a model, people choose to imitate the hard way; they attempt to match observed actions anatomically, in spite of the fact that anatomical matching is more subject to error than anatomical non-matching.
Resumo:
Understanding human movement is key to improving input devices and interaction techniques. This paper presents a study of mouse movements of motion-impaired users, with an aim to gaining a better understanding of impaired movement. The cursor trajectories of six motion-impaired users and three able-bodied users are studied according to their submovement structure. Several aspects of the movement are studied, including the frequency and duration of pauses between submovements, verification times, the number of submovements, the peak speed of submovements and the accuracy of submovements in two-dimensions. Results include findings that some motion-impaired users pause more often and for longer than able-bodied users, require up to five times more submovements to complete the same task, and exhibit a correlation between error and peak submovement speed that does not exist for able-bodied users.
Resumo:
Soft skin artefacts made of knitted nylon reinforced silicon rubber were fabricated mimicking octopus skin. A combination of ecoflex 0030 and 0010 were used as matrix of the composite to obtain the right stiffness for the skin artefacts. Material properties were characterised using static uniaxial tension and scissors cutting tests. Two types of tactile sensors were developed to detect normal contact; one used quantum tunnelling composite materials and the second was fabricated from silicone rubber and a conductive textile. Sensitivities of the sensors were tested by applying different modes of loading and the soft sensors were incorporated into the skin prototype. Passive suckers were developed and tested against squid suckers. An integrated skin prototype with embedded deformable sensors and attached suckers developed for the arm of an octopus inspired robot is also presented.
Resumo:
Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.
Resumo:
Objective: A phytoestrogen-rich diet has been suggested to protect against a variety of common diseases but UK intake data on phytoestrogens or their food sources is sparse. This study aims to estimate the average intake of isoflavones, lignans, enterolignans and coumestrol from 7-day food diaries (7dFD), and to provide data on total isoflavone, lignan and phytoestrogen consumption by food group. Design: Development of a food composition database for twelve phytoestrogens and analysis of soya food and phytoestrogen consumption in a population-based study. Setting: Men and women, aged 40-79 years from the general population participating in EPIC-Norfolk between 1993 and 1997, with nutrient and food data from 7dFD. Subjects: A subset of 20 437 participants. Results: The median daily phytoestrogen intake for men was 1.20mg (interquartile range (IQR) 0.93-1.54 mg; mean 1.50 mg, SD 1.50 mg) and 0.89 mg for women (IQR 0.71-1.14 mg; mean 1.20 mg, SD 1.70 mg). In soya-consumers (SC), median daily intakes were higher: 2.86 mg in men (IQR – 1.30-7.27mg; mean 5.05 mg, SD 5.03 mg) and 3.14 mg in women (IQR – 1.09-7.33mg; mean 5.40 mg, SD 6.09 mg). In both men and women, bread made the greatest contribution to phytoestrogen intake – 40.7% and 35.7% respectively. In SC men and women, vegetable dishes and soya/goat’s/sheep’s milks were the main contributors – 42.6% and 18.9% in men and 38.8% and 29.1% in women, respectively. Conclusions: The ability to estimate phytoestrogen intake in Western populations more accurately will aid investigations into their suggested effects on health.
Resumo:
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.
Resumo:
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement, and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons.
Resumo:
Recent evidence suggests that the mirror neuron system responds to the goals of actions, even when the end of the movement is hidden from view. To investigate whether this predictive ability might be based on the detection of early differences between actions with different outcomes, we used electromyography (EMG) and motion tracking to assess whether two actions with different goals (grasp to eat and grasp to place) differed from each other in their initial reaching phases. In a second experiment, we then tested whether observers could detect early differences and predict the outcome of these movements, based on seeing only part of the actions. Experiment 1 revealed early kinematic differences between the two movements, with grasp-to-eat movements characterised by an earlier peak acceleration, and different grasp position, compared to grasp-to-place movements. There were also significant differences in forearm muscle activity in the reaching phase of the two actions. The behavioural data arising from Experiments 2a and 2b indicated that observers are not able to predict whether an object is going to be brought to the mouth or placed until after the grasp has been completed. This suggests that the early kinematic differences are either not visible to observers, or that they are not used to predict the end-goals of actions. These data are discussed in the context of the mirror neuron system
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission