997 resultados para Bacterial groups
Resumo:
Cerebrospinal fluid (CSF) samples from 2083 patients with acquired immunodeficiency syndrome (AIDS) and neurological complications were bacteriologically examined during a period of 7 years (1984-1990). The percentage of patients who had at least one bacterial agent cultured from the CSF was 6.2%. Mycobacterium tuberculosis was the most frequently isolated agent (4.3%), followed by Mycobacterium avium complex or MAC (0.7%), Pseudomonas spp (0.5%), Enterobacter spp (0.4%), and Staphylococcus aureus (0.3%). Among 130 culture positive patients, 89 (68.5%) had M. tuberculosis and 15 (11.6%) had MAC. The frequency of bacterial isolations increased from 1988 (5.2%) to 1990 (7.2%), partly due to the increase in MAC isolations. Bacterial agents were more frequently isolated from patients in the age group 21-30 years and from women (p<0.05).
Resumo:
A dot-enzyme-linked immunosorbent assay (Dot-ELISA) for pneumococcal antigen detection was standardized in view of the need for a rapid and accurate immunodiagnosis of acute pneumococcal pneumonia. A total of 442 pleural fluid effusion samples (PFES) from children with clinical and laboratory diagnoses of acute bacterial pneumonia, plus 38 control PFES from tuberculosis patients and 20 negative control serum samples from healthy children were evaluated by Dot-ELISA. The samples were previously treated with 0.1 M EDTA pH 7.5 at 90°C for 10 min and dotted on nitrocellulose membrane. Pneumococcal omniserum diluted at 1:200 was employed in this assay for antigen detection. When compared with standard bacterial culture, counterimmunoelectrophoresis and latex agglutination techniques, the Dot-ELISA results showed relative indices of 0.940 to sensitivity, 0.830 to specificity and 0.760 to agreement. Pneumococcal omniserum proved to be an optimal polyvalent antiserum for the detection of pneumococcal antigen by Dot-ELISA. Dot-ELISA proved to be a practical alternative technique for the diagnosis of pneumococcal pneumonia.
Resumo:
In order to evaluate the role of the determination of adenosine deaminase activity (ADA) in ascitic fluid for the diagnosis of tuberculosis, 44 patients were studied. Based on biochemical, cytological, histopathological and microbiological tests, the patients were divided into 5 groups: G1 - tuberculous ascites (n = 8); G2 - malignant ascites (n = 13); G3 - spontaneous bacterial peritonitis (n = 6); G4 - pancreatic ascites (n = 2); G5 - miscelaneous ascites (n = 15). ADA concentration were significantly higher in G1 (133.50 ± 24.74 U/l) compared to the other groups (G2 = 41.85 ± 52.07 U/l; G3 = 10.63 ± 5.87 U/l; G4 = 18.00 ± 7.07 U/l; G5 = 11.23 ± 7.66 U/l). At a cut-off value of >31 U/l, the sensitivity, specificity and positive and negative preditive values were 100%, 92%, 72% and 100%, respectively. ADA concentrations as high as in tuberculous ascites were only found in two malignant ascites caused by lymphoma. We conclude that ADA determination in ascitic fluid is a useful and reliable screening test for diagnosing tuberculous ascites. Values of ADA higher than 31 U/l indicate more invasive methods to confirm the diagnosis of tuberculosis.
Resumo:
Recent data suggest that the clinical course of reactional states in leprosy is closely related to the cytokine profile released locally or systemically by the patients. In the present study, patients with erythema nodosum leprosum (ENL) were grouped according to the intensity of their clinical symptoms. Clinical and immunological aspects of ENL and the impact of these parameters on bacterial load were assessed in conjunction with patients' in vitro immune response to mycobacterial antigens. In 10 out of the 17 patients tested, BI (bacterial index) was reduced by at least 1 log from leprosy diagnosis to the onset of their first reactional episode (ENL), as compared to an expected 0.3 log reduction in the unreactional group for the same MDT (multidrug therapy) period. However, no difference in the rate of BI reduction was noted at the end of MDT among ENL and unreactional lepromatous patients. Accordingly, although TNF-alpha (tumor necrosis factor) levels were enhanced in the sera of 70.6% of the ENL patients tested, no relationship was noted between circulating TNF-alpha levels and the decrease in BI detected at the onset of the reactional episode. Evaluation of bacterial viability of M. leprae isolated from the reactional lesions showed no growth in the mouse footpads. Only 20% of the patients demonstrated specific immune response to M. leprae during ENL. Moreover, high levels of soluble IL-2R (interleukin-2 receptor) were present in 78% of the patients. Circulating anti-neural (anti-ceramide and anti-galactocerebroside antibodies) and anti-mycobacterial antibodies were detected in ENL patients' sera as well, which were not related to the clinical course of disease. Our data suggest that bacterial killing is enhanced during reactions. Emergence of specific immune response to M. leprae and the effective role of TNF-alpha in mediating fragmentation of bacteria still need to be clarified.
Resumo:
With the objective of standardizing a Dot Enzyme-Linked Immunosorbent Assay (Dot-ELISA) to detect antigens of fecal bacterial enteropathogens, 250 children, aged under 36 months and of both sexes, were studied; of which 162 had acute gastroenteritis. The efficacy of a rapid screening assay for bacterial enteropathogens (enteropathogenic Escherichia coli "EPEC", enteroinvasive Escherichia coli "EIEC", Salmonella spp. and Shigella spp.) was evaluated. The fecal samples were also submitted to a traditional method of stool culture for comparison. The concordance index between the two techniques, calculated using the Kappa (k) index for the above mentioned bacterial strains was 0.8859, 0.9055, 0.7932 and 0.7829 respectively. These values express an almost perfect degree of concordance for the first two and substantial concordance for the latter two, thus enabling this technique to be applied in the early diagnosis of diarrhea in infants. With a view to increasing the sensitivity and specificity of this immunological test, a study was made of the antigenic preparations obtained from two types of treatment: 1) deproteinization by heating; 2) precipitation and concentration of the lipopolysaccharide antigen (LPS) using an ethanol-acetone solution, which was then heated in the presence of sodium EDTA
Resumo:
Systematics is the study of diversity of the organisms and their relationships comprising classification, nomenclature and identification. The term classification or taxonomy means the arrangement of the organisms in groups (rate) and the nomenclature is the attribution of correct international scientific names to organisms and identification is the inclusion of unknown strains in groups derived from classification. Therefore, classification for a stable nomenclature and a perfect identification are required previously. The beginning of the new bacterial systematics era can be remembered by the introduction and application of new taxonomic concepts and techniques, from the 50s and 60s. Important progress were achieved using numerical taxonomy and molecular taxonomy. Molecular taxonomy, brought into effect after the emergence of the Molecular Biology resources, provided knowledge that comprises systematics of bacteria, in which occurs great evolutionary interest, or where is observed the necessity of eliminating any environmental interference. When you study the composition and disposition of nucleotides in certain portions of the genetic material, you study searching their genome, much less susceptible to environmental alterations than proteins, codified based on it. In the molecular taxonomy, you can research both DNA and RNA, and the main techniques that have been used in the systematics comprise the build of restriction maps, DNA-DNA hybridization, DNA-RNA hybridization, sequencing of DNA sequencing of sub-units 16S and 23S of rRNA, RAPD, RFLP, PFGE etc. Techniques such as base sequencing, though they are extremely sensible and greatly precise, are relatively onerous and impracticable to the great majority of the bacterial taxonomy laboratories. Several specialized techniques have been applied to taxonomic studies of microorganisms. In the last years, these have included preliminary electrophoretic analysis of soluble proteins and isoenzymes, and subsequently determination of deoxyribonucleic acid base composition and assessment of base sequence homology by means of DNA-RNA hybrid experiments beside others. These various techniques, as expected, have generally indicated a lack of taxonomic information in microbial systematics. There are numberless techniques and methodologies that make bacteria identification and classification study possible, part of them described here, allowing establish different degrees of subspecific and interspecific similarity through phenetic-genetic polymorphism analysis. However, was pointed out the necessity of using more than one technique for better establish similarity degrees within microorganisms. Obtaining data resulting from application of a sole technique isolatedly may not provide significant information from Bacterial Systematics viewpoint
Resumo:
The authors investigated the relationship between dermatophytosis and ABO blood groups through blood typing, identification of isolated dermatophytes and specific cellular immune response of 40 individuals carriers of this mycosis. They verified that the fungus Trichophyton rubrum, isolated from 54.5% of the patients, was more frequent in individuals belonging to blood group A. The cellular immune response, evaluated through the trichophytin antigen, was positive in 25% of the studied patients; the presence of immediate reactions (30 minutes) was verified in 35%. The blood group distribution among patients with dermatophytosis and control groups was, respectively: 47.5% X 36% in group A, 40% X 50% in group O, 12.5% X 11% in group B. Even though the authors have found a higher number of patients belonging to blood group A infected by T. rubrum, these results suggest that there is no statistical evidence that these individuals are more susceptible to dermatophytosis.
Resumo:
Hospital infections cause an increase in morbidity and mortality of hospitalized patients with significant rise in hospital costs. The aim of this work was an epidemiological analysis of hospital infection cases occurred in a public University Hospital in Rio de Janeiro. Hence, 238 strains were isolated from 14 different clinical materials of 166 patients hospitalized in the period between August 1995 and July 1997. The average age of the patients was 33.4 years, 72.9% used antimicrobials before having a positive culture. The most common risk conditions were surgery (19.3%), positive HIV or AIDS (18.1%) and lung disease (16.9%). 24 different bacterial species were identified, S. aureus (21%) and P. aeruginosa (18.5%) were predominant. Among 50 S. aureus isolated strains 36% were classified as MRSA (Methicillin Resistant S. aureus). The Gram negative bacteria presented high resistance to aminoglycosides and cephalosporins. A diarrhea outbreak, detected in high-risk neonatology ward, was caused by Salmonella serovar Infantis strain, with high antimicrobial resistance and a plasmid of high molecular weight (98Mda) containing virulence genes and positive for R factor.
Resumo:
FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica, Instituto Gulbenkian de Ciência.
Resumo:
RESUMO:Os microrganismos reagem à súbita descida de temperatura através de uma resposta adaptativa específica que assegura a sua sobrevivência em condições desfavoráveis. Esta adaptação inclui alterações na composição da membrana, na maquinaria de tradução e transcrição. A resposta ao choque térmico pelo frio induz uma repressão da transcrição. No entanto, a descida de temperatura induz a produção de um grupo de proteínas específicas que ajudam a ajustar/re-ajustar o metabolismo celular às novas condições ambientais. Em E. coli o processo de adaptação demora apenas quatro horas, no qual um grupo de proteínas específicas são induzidas. Depois desde período recomeça lentamente a produção de proteínas.A ribonuclease R, uma das proteínas induzidas durante o choque térmico pelo frio, é uma das principais ribonucleases em E. coli envolvidas na degradação do RNA. É uma exoribonuclease que degrada RNA de cadeia dupla, possui funções importantes na maturação e “turnover” do RNA, libertação de ribossomas e controlo de qualidade de proteínas e RNAs. O nível celular desta enzima aumenta até dez vezes após exposição ao frio e estabiliza em células na fase estacionária. A capacidade de degradar RNA de dupla cadeia é importante a baixas temperaturas quando as estruturas de RNA estão mais estáveis. No entanto, este mecanismo é desconhecido. Embora a resposta específica ao “cold shock” tenha sido descoberta há mais de duas décadas e o número de proteínas envolvidas sugerirem que esta adaptação é rápida e simples, continuamos longe de compreender este processo. No nosso trabalho pretendemos descobrir proteínas que interactuem com a RNase R em condições ambientais diferentes através do método “TAP-tag” e espectrometria de massa. A informação obtida pode ser utilizada para deduzir algumas das novas funções da RNase R durante a adaptação bacteriana ao frio e durante a fase estacionária. Mais importante ainda, RNase R poderá ser recrutada para um complexo de proteínas de elevado peso molecular durante o “cold-shock”.------------ABSTRACT:Microorganisms react to the rapid temperature downshift with a specific adaptative response that ensures their survival in unfavorable conditions. Adaptation includes changes in membrane composition, in translation and transcription machinery. Cold shock response leads to overall repression of translation. However, temperature downshift induces production of a set of specific proteins that help to tune cell metabolism and readjust it to the new environmental conditions. For Escherichia coli the adaptation process takes only about four hours with a relatively small set of specifically induced proteins involved. After this time, protein production resumes, although at a slower rate. One of the cold inducible proteins is RNase R, one of the main E. coli ribonucleases involved in RNA degradation. RNase R is an exoribonuclease that digest double stranded RNA, serves important functions in RNA maturation and turnover, release of stalled ribosomes by trans-translation, and RNA and protein quality control. The level of this enzyme increases about ten-fold after cold induction, and it is also stabilised in cells growing in stationary phase. The RNase R ability to digest structured RNA is important at low temperatures where RNA structures are stabilized but the exact role of this mechanism remains unclear. Although specific bacterial cold shock response was discovered over two decades ago and the number of proteins involved suggests that this adaptation is fast and simple, we are still far from understanding this process. In our work we aimed to discover the proteins interacting with RNase R in different environmental conditions using TAP tag method and mass spectrometry analysis. The information obtained can be used to deduce some of the new functions of RNase R during adaptation of bacteria to cold and in stationary growth phase. Most importantly RNase R can be recruited into a high molecular mass complex of protein in cold shock.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.