930 resultados para Bacterial adherence
Resumo:
The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.
Resumo:
We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.
Resumo:
Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.
Resumo:
Daptomycin is a promising candidate for local treatment of bone infection due to its activity against multi-resistant staphylococci. We investigated the activity of antibiotic-loaded PMMA against Staphylococcus epidermidis biofilms using an ultra-sensitive method bacterial heat detection method (microcalorimetry). PMMA cylinders loaded with daptomycin alone or in combination with gentamicin or PEG600, vancomycin and gentamicin were incubated with S. epidermidis-RP62A in tryptic soy broth (TSB) for 72h. Cylinders were thereafter washed and transferred in microcalorimetry ampoules pre-filled with TSB. Bacterial heat production, proportional to the quantity of biofilm on the PMMA, was measured by isothermal microcalorimetry at 37°C. Heat detection time was considered time to reach 20μW. Experiments were performed in duplicate. The heat detection time was 5.7-7.0h for PMMA without antibiotics. When loaded with 5% of daptomycin, vancomycin or gentamicin, detection times were 5.6-16.4h, 16.8-35.7h and 4.7-6.2h, respectively. No heat was detected when 5% gentamicin or 0.5% PEG600 was added to the daptomycin-loaded PMMA. The study showed that vancomycin was superior to daptomycin and gentamicin in inhbiting staphylococcal adherence in vitro. However, PMMA loaded with daptomycin combined with gentamicin or PEG600 completely inhibited S. epidermidis-biofilm formation. PMMA loaded with these combinations may represent effective strategies for local treatment in the presence of multi-resistant staphylococci.
Resumo:
Poor long-term adherence and persistence to drug therapy is universally recognized as one of the major clinical issues in the management of chronic diseases, and patients with renal diseases are also concerned by this important phenomenon. Chronic kidney disease (CKD) patients belong to the group of subjects with one of the highest burdens of daily pill intake with up to >20 pills per day depending on the severity of their disease. The purpose of the present review is to discuss the difficulties encountered by nephrologists in diagnosing and managing poor adherence and persistence in CKD patients including in patients receiving maintenance dialysis. Our review will also attempt to provide some clues and new perspectives on how drug adherence could actually be addressed and possibly improved. Working on drug adherence may look like a long and tedious path, but physicians and healthcare providers should always be aware that drug adherence is in general much lower than what they may think and that there are many ways to improve and support drug adherence and persistence so that renal patients obtain the full benefits of their treatments.
Resumo:
A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.
Resumo:
Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.
Resumo:
Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).
Resumo:
BACKGROUND: Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies. METHODS AND RESULTS: Consecutive patients in whom cardiac pacemakers and implantable cardioverter/defibrillators were removed at our institution between October 2007 and December 2008 were prospectively included. Devices (generator and/or leads) were aseptically removed and sonicated, and the resulting sonication fluid was cultured. In parallel, conventional swabs of the generator pouch were performed. A total of 121 removed devices (68 pacemakers, 53 implantable cardioverter/defibrillators) were included. The reasons for removal were insufficient battery charge (n=102), device upgrading (n=9), device dysfunction (n=4), or infection (n=6). In 115 episodes (95%) without clinical evidence of infection, 44 (38%) grew bacteria in sonication fluid, including Propionibacterium acnes (n=27), coagulase-negative staphylococci (n=11), Gram-positive anaerobe cocci (n=3), Gram-positive anaerobe rods (n=1), Gram-negative rods (n=1), and mixed bacteria (n=1). In 21 of 44 sonication-positive episodes, bacterial counts were significant (>or=10 colony-forming units/mL of sonication fluid). In 26 sterilized controls, sonication cultures remained negative in 25 cases (96%). In 112 cases without clinical infection, conventional swab cultures were performed: 30 cultures (27%) were positive, and 18 (60%) were concordant with sonication fluid cultures. Six devices and leads were removed because of infection, growing Staphylococcus aureus, Streptococcus mitis, and coagulase-negative staphylococci in 6 sonication fluid cultures and 4 conventional swab cultures. CONCLUSIONS: Bacteria can colonize cardiac electrophysiological devices without clinical signs of infection.
Resumo:
The study examined how religious beliefs and practices impact upon medication and illness representations in chronic schizophrenia. One hundred three stabilized patients were included in Geneva's outpatient public psychiatric facility in Switzerland. Interviews were conducted to investigate spiritual and religious beliefs and religious practices and religious coping. Medication adherence was assessed through questions to patients and to their psychiatrists and by a systematic blood drug monitoring. Thirty-two percent of patients were partially or totally nonadherent to oral medication. Fifty-eight percent of patients were Christians, 2% Jewish, 3% Muslim, 4% Buddhist, 14% belonged to various minority or syncretic religious movements, and 19% had no religious affiliation. Two thirds of the total sample considered spirituality as very important or even essential in everyday life. Fifty-seven percent of patients had a representation of their illness directly influenced by their spiritual beliefs (positively in 31% and negatively in 26%). Religious representations of illness were prominent in nonadherent patients. Thirty-one percent of nonadherent patients and 27% of partially adherent patients underlined an incompatibility or contradiction between their religion and taking medication, versus 8% of adherent patients. Religion and spirituality contribute to shaping representations of disease and attitudes toward medical treatment in patients with schizophrenia. This dimension should be on the agenda of psychiatrists working with patients with schizophrenia.
Resumo:
Despite the development of many effective antihypertensive drugs, target blood pressures are reached in only a minority of patients in clinical practice. Poor adherence to drug therapy and the occurrence of side effects are among the main reasons commonly reported by patients and physicians to explain the poor results of actual antihypertensive therapies. The development of new effective antihypertensive agents with an improved tolerability profile might help to partly overcome these problems. Lercanidipine is an effective dihydropyridine calcium channel blocker of the third generation characterized by a long half-life and its lipophylicity. In contrast to first-generation dihydropyridines, lercanidipine does not induce reflex tachycardia and induces peripheral edema with a lower incidence. Recent data suggest that in addition to lowering blood pressure, lercanidipine might have some renal protective properties. In this review we shall discuss the problems of drug adherence in the management of hypertension with a special emphasis on lercanidipine.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.
Resumo:
Isogenic Staphylococcus aureus strains with different capacities to produce sigma(B) activity were analyzed for their ability to attach to fibrinogen- or fibronectin-coated surfaces or platelet-fibrin clots and to cause endocarditis in rats. In comparison to the sigma(B)-deficient strain, BB255, which harbors an rsbU mutation, both rsbU-complemented and sigma(B)-overproducing derivatives exhibited at least five times greater attachment to fibrinogen- and fibronectin-coated surfaces and showed increased adherence to platelet-fibrin clots. No differences in adherence were seen between BB255 and a DeltarsbUVWsigB isogen. Northern blotting analyses revealed that transcription of clfA, encoding fibrinogen-binding protein clumping factor A, and fnbA, encoding fibronectin-binding protein A, were positively influenced by sigma(B). Sigma(B) overproduction resulted in a statistically significant increase in positive spleen cultures and enhanced bacterial densities in both the aortic vegetations and spleens at 16 h postinoculation. In contrast, at 72 h postinoculation, tissues infected with the sigma(B) overproducer had lower bacterial densities than did those infected with BB255. These results suggest that although sigma(B) appears to increase the adhesion of S. aureus to various host cell-matrix proteins in vitro, it has limited effect on pathogenesis in the rat endocarditis model. Sigma(B) appears to have a transient enhancing effect on bacterial density in the early stages of infection that is lost during progression.
Resumo:
Abstract Animal behaviours or structures are used by senders as signals to try to increase their fitness by altering the behaviour of receivers. A large fraction of studies on sexual selection have focussed on male ornaments and have demonstrated that these ornaments signal the quality of their owner and are used by female for mate choice. Although females can also exhibit conspicuous traits, studies on female ornaments are markedly lacking. In chapter 1, we show that female starlings are showier on chest whiteness than males and that females' whiteness may potentially indicate female condition at the start of breeding and provide fitness advantages to breeding birds. Furthermore we point out that feather density and abrasion are important factors shaping the expression of chest whiteness. This suggests that further understanding of the evolution of chest whiteness in Starlings requires to examine the environmental and physiological factors that shape feather condition. Plumage may suffer from damage through abrasion and bacterial activity. In chapter 2, we focus on factors that influence feather-degrading bacterial communities. Within the hypothesis that parental care can be trade-off against the demands of self-maintenance, we show that a brood size manipulation modifies the structure of feather-degrading bacterial communities and the density of free- living bacteria. Thus we have pointed out a potentially poorly known cost of reproduction. In the same context of a trade-off between reproductive activities and individual self-maintenance, chapter 3 shows that at a proximate level in females but not in males, the individual variation in time and/or energy allocated in reproductive activities is associated with prolactin hormone levels. Our study provides evidence for the existence of a sex related difference in the relationship between brood size and prolactin levels. Birds have evolved sanitation behaviours and preen gland secretions to preserve the condition of their plumage. In chapter 4, we describe a method that allows to measure preen gland in situ. Then we use this method to characterize a number of phenotypic and ecological factors that explain variation in preen gland size in free-living individuals. In parent-offspring interactions, parents use offspring signals to provision their brood. In chapter 5, we demonstrate that nestling flanges and body skin reflect in the ultra-violet (UV) wavelengths ant that parents use this UV reflectance in food allocation decisions. Résumé Certains comportements et structures chez les animaux agissent, pour ceux qui les émettent, comme des signaux permettant d'augmenter leur fitness en altérant les comportements de ceux qui les perçoivent. Une grande partie des études sur la sélection sexuelle s'est focalisée sur les ornements mâles. Ces études ont démontré que ces ornements pouvaient signaler la qualité de celui qui les porte et influencer le choix des femelles. Bien que les femelles puissent aussi présenter des traits voyants, les études sur leurs ornements font défaut. Dans le chapitre 1 de ce travail, nous montrons que les étourneaux femelles sont plus voyantes que les mâles sur la base de la blancheur de la poitrine. De plus la blancheur des femelles peut signaler leur condition au début de la saison de reproduction et ainsi être corrélée avec leur fitness. Nous mettons aussi en évidence que la densité et l'abrasion des plumes sont des facteurs importants, contrôlant l'expression de la blancheur de la poitrine. Ceci suggère que des études futures pourraient examiner le rôle des facteurs environnementaux et physiologiques qui influencent la condition des plumes pour mieux comprendre l'évolution de la blancheur chez les étourneaux. Le plumage subit des dommages à travers l'abrasion et probablement aussi par l'activité de dégradation de bactéries. Dans le chapitre 2 de ce travail, nous nous intéressons aux facteurs qui influencent les communautés de bactéries dégradant les plumes. Nous basant sur l'hypothèse selon laquelle il existe un compromis entre les soins parentaux et la maintenance corporelle, nous montrons qu'une manipulation de la taille de nichée modifie la structure des communautés de bactéries dégradant les plumes ainsi que les densités de bactéries libres présentes sur le plumage. Ainsi nous mettons en évidence un coût encore peu connu des activités de reproduction. Dans le même contexte, nous montrons, dans le chapitre 3, que des variations individuelles dans l'énergie et/ou le temps alloué dans les activités de reproduction sont associés, chez les femelles, à un niveau proximal à l'hormone prolactine. Cette relation n'est pas présente chez les mâles. Cette étude montre que la relation entre la taille de nichée et les niveaux de prolactine diffère avec le sexe des individus. Les oiseaux utilisent des comportements de nettoyage associés aux sécrétions de la glande uropygiale afin de préserver la condition de leurs plumes. Dans le chapitre 4 de ce travail, nous décrivons une méthode qui permet de mesurer la taille de la glande in situ. Puis nous caractérisons certains facteurs écologiques et physiologiques qui expliquent les variations de la taille de la glande chez des individus capturés dans leur environnement. Les parents nourrissent leur progéniture en réponse à des signaux émis par ceux-ci. Dans le chapitre 5 de ce travail, nous démontrons que les commissures et la peau sur le corps des oisillons reflètent la lumière dans l'ultraviolet. Nous montrons que les parents utilisent cette réflexion dans l'ultraviolet lors de l'allocation de nourriture pour leurs jeunes.