657 resultados para BIFURCATION
Resumo:
In this work we apply a nonperturbative approach to analyze soliton bifurcation ill the presence of surface tension, which is a reformulation of standard methods based on the reversibility properties of the system. The hypothesis is non-restrictive and the results can be extended to a much wider variety of systems. The usual idea of tracking intersections of unstable manifolds with some invariant set is again used, but reversibility plays an important role establishing in a geometrical point of view some kind of symmetry which, in a classical way, is unknown or nonexistent. Using a computer program we determine soliton solutions and also their bifurcations ill the space of parameters giving a picture of the chaotic structural distribution to phase and amplitude shift phenomena. (C) 2009 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we search for the dynamics of a simple portal structure in the free and in the periodic excitation cases. By using the Center Manifold approach and Averaging Method, we obtain results on both stability and bifurcation of equilibrium points and periodic orbits. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Some consequences of dissipation are studied for a classical particle suffering inelastic collisions in the hybrid Fermi-Ulam bouncer model. The dynamics of the model is described by a two-dimensional nonlinear area-contracting map. In the limit of weak and moderate dissipation we report the occurrence of crisis and in the limit of high dissipation the model presents doubling bifurcation cascades. Moreover, we show a phenomena of annihilation by pairs of fixed points as the dissipation varies. (c) 2007 American Institute of Physics.
Resumo:
In this work, the occurrence of chaos (homoclinic scene) is verified in a robotic system with two degrees of freedom by using Poincare-Mel'nikov method. The studied problem was based on experimental results of a two-joint planar manipulator-first joint actuated and the second joint free-that resides in a horizontal plane. This is the simplest model of nonholonomic free-joint manipulators. The purpose of the present study is to verify analytically those results and to suggest a control strategy.
Resumo:
In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.
Resumo:
This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Analytical study of the nonlinear behavior of a shape memory oscillator: Part II-resonance secondary
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.