960 resultados para Average chain length
Resumo:
Aim: Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Methods: Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol andtris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. Results and conclusion: The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility. © 2012 Informa Healthcare USA, Inc.
Resumo:
Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.
Resumo:
The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.
Resumo:
Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes, they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayers forming, whilst asymmetric lipids formed less condensed monolayers. However, this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Templated, macroporous Mg-Al hydrotalcites synthesised via alkali-free co-precipitation exhibit superior performance in the transesterification of C4 -C18 triglycerides for biodiesel production, with rate-enhancement increasing with alkyl chain length. Promotion reflects improved diffusion of bulky triglycerides and accessibility of active sites within the hierarchical macropore-micropore architecture. © 2012 The Royal Society of Chemistry.
Resumo:
The development of catalytic materials for the efficient combustion of light alkanes is fundamentally important for both automotive pollution control and the control of emissions produced from bio-fuel combustion. The presence of trace gas-phase SO2 is known to promote low temperature propane combustion over conventional Pt/Al2O3 combustion catalysts, however, there have been no systematic efforts to isolate the respective roles of support and metal, and it remains unclear, which plays the dominant role in this unusual phenomenon. Light alkane combustion over Pt/Al2O3 using pre-sulfated alumina supports to tune the physicochemical catalyst properties was presented. Support sulfation significantly enhanced ethane combustion, and improved methane and propane light-off. Catalyst activity increased with Pt loading, while the magnitude of sulfate promotion scales with alkane chain length. This is an abstract of a paper presented at the 228th ACS National Meeting (Philadelphia, PA 8/22-26/2004).
Resumo:
Sulphate-promoted alkane combustion has been investigated over a series of Pt/Al2O3 catalysts using pre-sulphated alumina supports. Catalyst sulphation greatly enhanced ethane combustion over Pt/Al2O3, and also improved methane and propane light-off performance. Catalyst activity increased with Pt loading, however the magnitude of sulphate promotion was independent of Pt loading under oxidising conditions, but scaled with alkane chain length. Propane combustion activity was directly proportional to the surface coverage of aluminium sulphate sites; support-mediated alkane activation is the dominant process in sulphate promotion.
Resumo:
The hormone glucagon-like peptide-1(7-36)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucose-dependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidylpeptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the E-amino group in the side chain of the LyS26 residue and to combine this modification with substitutions of the Ala 8 residue, namely Val or amino-butyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal) 26]GLP-1, [Abu8,Lys(pal)26]GLP-1 and [Val8,Lys-(pal)26]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal β-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val8,Lys(pal)26]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)26]GLP-1, [Abu8,Lys(pal) 26]GLP-1 and [Val8,Lys(pal) 26]GLP-1 did not demonstrate acute glucose-lowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability. Copyright © by Walter de Gruyter.
Resumo:
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.
Resumo:
Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.
Resumo:
Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.
Resumo:
The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.
Resumo:
The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase). The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. aegypti. This dissertation also explored the inhibition of the activity of some of the JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In addition, inhibitors of AaMK and AaHMGS were also investigated using purified recombinant proteins. The present study provides an important contribution to the characterization of recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as the understanding of the importance of these five enzymes in the control of JH biosynthesis rates.
Resumo:
The genus Hemidactylus Oken, 1817 has cosmopolite distribution, with three species occurring in Brazil, two of them native, H. brasilianus and H. agrius, and one exotic, H. mabouia. Considering the studies about ecology of lizards conducted in the Ecological Station of the Seridó, from 2001 to 2011, this study aimed (1) to re-evaluate the occurrence of the species of Hemidactylus in this ESEC; (2) to analyze ecological and biological aspects of the H. agrius population; and (3) to investigate the current and potential distribution of the native species of the genus in northeastern Brazil, analyzing the suitability of ESEC to this taxon. For the first two objectives, a sampling area consisting of five transects of 200 x 20 m, was inspected in alternating daily shifts for three consecutive days, from August 2012 to August 2013. For the latter objective, occurrence points of H. agrius and H. brasilianus from literature and from the database of Herpetological Collections of the UFRN and the UNICAMP were consulted to build predictive maps via the Maximum Entropy algorithm (MaxEnt). In ESEC Seridó, 62 H. agrius individuals were collected (25 females, 18 males and 19 juveniles), and two neonates were obtained from a communal nest incubated in the laboratory. No record was made for the other two species of the genus. Hemidactylus agrius demonstrated to be a nocturnal species specialized in habitats with rocky outcrops; but this species is generalist regarding microhabitat use. In the population studied, females had an average body length greater than males, and showed higher frequencies of caudal autotomy. Regarding diet, H. agrius is a moderately generalist species that consumes arthropods, especially insect larvae, Isoptera and Araneae; and vertebrates, with a case of cannibalism registered in the population. With respect to seasonal differences, only the number of food items ingested differed between seasons. The diet was similar between sexes, but ontogenetic differences were recorded for the total volume and maximum length of the food items. Significant relationships were found between lizard body/head size measurements and the maximum length of prey consumed. Cases of polydactyly and tail bifurcation were recorded in the population, with frequencies of 1.6% and 3.1%, respectively. In relation xv to the occurrence points of the native species, 27 were identified, 14 for H. agrius and 13 for H. brasilianus. The first species presented restricted distribution, while the second showed a wide distribution. In both models generated, the ESEC Seridó area showed medium to high suitability. The results of this study confirm the absence of H. brasilianus and H. mabouia this ESEC, and reveal H. agrius as a dietary opportunist and cannibal species. Further, the results confirm the distribution patterns shown by native species of Hemidactylus, and point ESEC Seridó as an area of probable occurrence for the species of the genus, the establishing of H. brasilianus and H. mabouia are probably limited by biotic factors, a fact yet little understood