915 resultados para Automatic classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the subject-matter of teaching immaterial issues like power system dynamics where the phenomena and events are not sense-perceptible. The dynamics of the power system are recognized as analogous to the dynamics of a simple mechanical pendulum taken into account the well-known classical model for the synchronous machine. It is shown that even for more sophisticated models including flux decay and Automatic Voltage Regulator the mechanical device can be taken as an analogous, since provided some considerations about variation and control of the pendulum length using certain control laws. The resulting mathematical model represents a mechanical system that can be built for use in laboratory teaching of power system dynamics. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic inspection of petroleum well drilling has became paramount in the last years, mainly because of the crucial importance of saving time and operations during the drilling process in order to avoid some problems, such as the collapse of the well borehole walls. In this paper, we extended another work by proposing a fast petroleum well drilling monitoring through a modified version of the Optimum-Path Forest classifier. Given that the cutting's volume at the vibrating shale shaker can provide several information about drilling, we used computer vision techniques to extract texture informations from cutting images acquired by a digital camera. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and effciency. We used the Optimum-Path Forest (OPF), EOPF (Efficient OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP) Support Vector Machines (SVM), and a Bayesian Classifier (BC) to assess the robustness of our proposed schema for petroleum well drilling monitoring through cutting image analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time. © 2010 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents three methods for automatic detection of dust devils tracks in images of Mars. The methods are mainly based on Mathematical Morphology and results of their performance are analyzed and compared. A dataset of 21 images from the surface of Mars representative of the diversity of those track features were considered for developing, testing and evaluating our methods, confronting their outputs with ground truth images made manually. Methods 1 and 3, based on closing top-hat and path closing top-hat, respectively, showed similar mean accuracies around 90% but the time of processing was much greater for method 1 than for method 3. Method 2, based on radial closing, was the fastest but showed worse mean accuracy. Thus, this was the tiebreak factor. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a program for the automatic generation of code for Intel's 8051 microcontroller. The code is generated from a place-transition Petri net specification. Our goal is to minimize programming time. The code generated by our program has been observed to exactly match the net model. It has also been observed that no change is needed to be made to the generated code for its compilation to the target architecture. © 2011 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of the present work is to verify the applicability of the Immersed Boundary Method together with the Virtual Physical Model to solve the flow through automatic valves of hermetic compressors. The valve was simplified to a two-dimensional radial diffuser, with diameter ratio of D/d = 1.5, and simulated for a one cycle of opening and closing process with a imposed velocity of 3.0 cm/s for the reed, dimensionless gap between disks in the range of 0.07 < s/d < 0.10, and inlet Reynolds number equal to 1500. The good results obtained showed that the methodology has great potential as project tool for this type of valve systems. © The Authors, 2011.