995 resultados para Atomic Displacement Parameters
Resumo:
Qualquer estrutura hoje em dia deve ser resistente, robusta e leve, o que aumentou o interesse industrial e investigação nas ligações adesivas, nomeadamente pela melhoria das propriedades de resistência e fratura dos materiais. Com esta técnica de união, o projeto de estruturas pode ser orientado para estruturas mais leves, não só em relação à economia direta de peso relativamente às juntas aparafusas ou soldadas, mas também por causa da flexibilidade para ligar materiais diferentes. Em qualquer área da indústria, a aplicação em larga escala de uma determinada técnica de ligação supõe que estão disponíveis ferramentas confiáveis para o projeto e previsão da rotura. Neste âmbito, Modelos de Dano Coesivo (MDC) são uma ferramenta essencial, embora seja necessário estimar as leis MDC do adesivo à tração e corte para entrada nos modelos numéricos. Este trabalho avalia o valor da tenacidade ao corte (GIIC) de juntas coladas para três adesivos com ductilidade distinta. O trabalho experimental consiste na caracterização à fratura ao corte da ligação adesiva por métodos convencionais e pelo Integral-J. Além disso, pelo integral-J, é possível definir a forma exata da lei coesiva. Para o integral-J, é utilizado um método de correlação de imagem digital anteriormente desenvolvido para a avaliação do deslocamento ao corte do adesivo na extremidade da fenda (δs) durante o ensaio, acoplado a uma sub-rotina em Matlab® para a extração automática de δs. É também apresentado um trabalho numérico para avaliar a adequabilidade de leis coesivas triangulares aproximadas em reproduzir as curvas força-deslocamento (P-δ) experimentais dos ensaios ENF. Também se apresenta uma análise de sensibilidade para compreender a influência dos parâmetros coesivos nas previsões numéricas. Como resultado deste trabalho, foram estimadas experimentalmente as leis coesivas de cada adesivo pelo método direto, e numericamente validadas, para posterior previsão de resistência em juntas adesivas. Em conjunto com a caraterização à tração destes adesivos, é possível a previsão da rotura em modo-misto.
Resumo:
O uso de ligações adesivas aumentou significativamente nos últimos anos e é hoje em dia uma técnica de ligação dominante na indústria aeronáutica e automóvel. As ligações adesivas visam substituir os métodos tradicionais de fixação mecânicos na união de estruturas. A melhoria ao longo dos anos de vários modelos de previsão de dano, nomeadamente através do Método de Elementos Finitos (MEF), tem ajudado ao desenvolvimento desta técnica de ligação. Os Modelos de Dano coesivo (MDC), usados em conjunto com MEF, são uma ferramenta viável para a previsão de resistência de juntas adesivas. Os MDC combinam critérios da resistência dos materiais para a iniciação do dano e conceitos da mecânica da fratura para a propagação da fenda. Existem diversas formas de leis coesivas possíveis de aplicar em simulações por MDC, em função do comportamento expectável dos materiais que estão a ser simulados. Neste trabalho, estudou-se numericamente o efeito de diversas formas de leis coesivas na previsão no comportamento de juntas adesivas, nomeadamente nas curvas forçadeslocamento (P-) de ensaios Double-Cantilever Beam para caracterização à tração e ensaios End-Notched Flexure para caraterização ao corte. Também se estudou a influência dos parâmetros coesivos à tração e corte nas curvas P- dos referidos ensaios. Para o Araldite®AV138 à tração e ao corte, a lei triangular é a que melhor prevê o comportamento do adesivo. Para a previsão da resistência de ambos os adesivos Araldite® 2015 e SikaForce® 7752, a lei trapezoidal é a que melhor se adequa, confirmando assim que esta lei é a que melhor caracteriza o comportamento de dano de adesivos tipicamente dúcteis. O estudo dos parâmetros revelou influência distinta na previsão do comportamento das juntas, embora com bastantes semelhanças entre os diferentes tipos de adesivos.
Optimization of fMRI Processing Parameters for Simutaneous Acquisition of EEG/fMRI in Focal Epilepsy
Resumo:
In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation to obtain a Master degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Abstract: Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 +/- 0.18 (between tibia length and BW42) to 0.89 +/- 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente
Resumo:
The objective of the present study was to analyze HCV serological and virological parameters from hemophiliacs in the State of Bahia. Anti-HCV was investigated by ELISA in a cohort of 268 hemophiliacs A/B who were followed-up in a reference unit for hemotherapy in the State of Bahia. HCV viremia and genotypes were also determined from a subset of 66 anti-HCV seropositive hemophiliacs. Seroprevalence among hemophiliacs was 42.2% (95% CI 36.5-48.1) and was significantly higher (p<0.05) according to age >10 years, presence of factor VIII/IX inhibitory antibodies and other infection markers. None of the hemophiliacs less than 5 years of age were anti-HCV seropositive. Viremia was detectable in 77.3% (51/66). HCV genotype 1 (74%) was the most prevalent followed by genotype 3 (22%) and genotype 2 (4%). Our results indicate that HCV prevalence is still high among hemophiliacs, although HCV transmission was not observed in young hemophiliacs.
Resumo:
INTRODUCTION: Discrepancy between the intensity of pulmonary congestion and the grade of cardiomegaly seems to be a common finding of Chagas cardiomyopathy, in spite of significant systolic dysfunction of the left ventricle. Its mechanism has not been established. The aim of this study was to investigate pulmonary congestion and to analyze if it correlated with Doppler echocardiographic parameters in patients with Chagas dilated cardiomyopathy. METHODS: Fifty-five patients with positive serology tests for Trypanosoma cruzi and Chagas dilated cardiomyopathy were studied. Chest x-rays, Doppler echocardiogram and plasmatic brain natriuretic peptide levels were obtained in all patients. The degree of pulmonary venous vessels changes on chest x-ray was graded using a pulmonary congestion score, and then compared to Doppler echocardiographic parameters. RESULTS: Mean age was 48.5 ± 11.2 years and 29% were women. The majority (95%) of patients were in NYHA functional class I and II. Mild pulmonary congestion by chest x-ray was found in 80% of the patients. In a multivariate analysis, left ventricular ejection fraction, right ventricular TEI index and the color M-mode velocity correlated with the degree of pulmonary congestion. CONCLUSIONS: Pulmonary venous changes on chest x-rays are frequent, but usually mild in patients with Chagas dilated cardiomyopathy. The degree of pulmonary congestion correlates with Doppler echocardiographic left and right ventricular dysfunction and with color M-mode velocity.
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
INTRODUCTION: Despite significant left ventricular (LV) systolic dysfunction and cardiomegaly, pulmonary congestion does not seem to be a major finding in Chagas' cardiomyopathy (CC). This study sought to identify echocardiographic parameters associated with pulmonary congestion in CC and in dilated cardiomyopathy of other etiologies, such as non-CC (NCC), and to compare pulmonary venous hypertension between the two entities. METHODS: A total of 130 consecutive patients with CC and NCC, with similar echocardiographic characteristics, were assessed using Doppler echocardiography and chest radiography. Pulmonary venous vessel abnormalities were graded using a previously described pulmonary congestion score, and this score was compared with Doppler echocardiographic parameters. RESULTS: NCC patients were older than CC patients (62.4 ± 13.5 × 47.8 ± 11.2, p = 0.00), and there were more male subjects in the CC group (66.2% × 58.5%, p = 0.4). Pulmonary venous hypertension was present in 41 patients in the CC group (63.1%) and in 63 (96.9%) in the NCC group (p = 0.0), the mean lung congestion score being 3.2 ± 2.3 and 5.9 ± 2.6 (p = 0.0), respectively. On linear regression multivariate analysis, the E/e' ratio (β = 0.13; p = 0.0), LV diastolic diameter (β = 0.06; p = 0.06), left atrial diameter (β = 0.51; p = 0.08), and right ventricular (RV) end-diastolic diameter (β = 0.02; p = 0.48) were the variables that correlated with pulmonary congestion in both groups. CONCLUSIONS: Pulmonary congestion was less significant in patients with CC. The degree of LV of systolic and diastolic dysfunction and the RV diameter correlated with pulmonary congestion in both groups. The E/e' ratio was the hallmark of pulmonary congestion in both groups.
Resumo:
Although modern combined antiretroviral therapies (cART) result in lower morbidity and mortality and a visible improvement of clinical and laboratory parameters in HIV-infected, it is known that their long-term use contributes to appearance of the many events unrelated to AIDS such as cardiovascular diseases, cancer and osteoporosis, comorbidities which have been proposed as some of the most important that deprive the majority of infected to present an even better prognosis. This is because even with a decrease in inflammation and immune activation after drug intervention to the patient, these parameters remain higher than those shown by healthy individuals and the imbalance of cytokine profiles also persists. Therefore, evaluations of other biomarkers in clinical practice are needed to complement the exams already carried out routinely and allow more effective monitoring of HIV patients. This review aims to investigate the role of cytokines as potential markers showing studies on their behavior in various stages of HIV infection, with or without cART.