987 resultados para Astronomical chronology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies have shown that delta18O records from benthic and planktonic foraminifera, primarily a proxy of global ice volume variations, reflect Milankovitch periodicities. To study climatic response to orbital forcing at Ocean Drilling Program site 758, we have generated continuous delta18O and delta13C records from a single benthic foraminiferal species Cibicides wuellerstorfi for the last 3.6 m.y. and extended the planktonic foraminiferal isotope records of Farrell and Janecek (1991, doi:10.2973/odp.proc.sr.121.124.1991) (0-2.5 Ma, based on Globigerinoides sacculifer) to 3.6 Ma (Chen, 1994). We then constructed an age model by matching, correlating and tuning the benthic delta18O record to a model simulation of ice volume (Imbrie and Imbrie, 1980, doi:10.1126/science.207.4434.943). The filtered 41- and 23-kyr signals based on the resultant astronomically tuned age model are highly correlated to obliquity (r=0.83) and precession (r=0.75), respectively. Although derived with methodology different from Shackleton et al. (1990) and Hilgen (1991, doi:10.1016/0012-821X(91)90206-W, 1991, doi:10.1016/0012-821X(91)90082-S), our results generally agree with their published astronomical timescales for the time interval from 0 to 3.0 Ma, providing additional support for the newly emerging chronology based on orbital tuning. Slight discrepancies exist in the time interval from 3.0 to 3.6 Ma, suggesting several possibilities, including differences in the approaches of orbital tuning and the relatively low amplitude of delta18O variations in our record. However, even if the discrepancies are due to the relatively low amplitude of the isotope signals in our record at 3.0-3.6 Ma, our resultant timescale as a whole does not adversely affect our evaluation of the paleoclimatology and paleoceanography of the Indian Ocean, such as the evolution of the 100-, 41- and 23-kyr cycles, and variation of global ice volume and deepwater temperature during the past 3.6 m.y.

Relevância:

20.00% 20.00%

Publicador: