876 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
In this paper, we discuss the problem of maintenance of a CBR system for retrieval of rotationally symmetric shapes. The special feature of this system is that similarity is derived primarily from graph matching algorithms. The special problem of such a system is that it does not operate on search indices that may be derived from single cases and then used for visualisation and principle component analyses. Rather, the system is built on a similarity metric defined directly over pairs of cases. The problems of efficiency, consistency, redundancy, completeness and correctness are discussed for such a system. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and a Gramian visualisation. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
For the purposes of starting to tackle, within artificial intelligence (AI), the narrative aspects of legal narratives in a criminal evidence perspective, traditional AI models of narrative understanding can arguably supplement extant models of legal narratives from the scholarly literature of law, jury studies, or the semiotics of law. Not only: the literary (or cinematic) models prominent in a given culture impinge, with their poetic conventions, on the way members of the culture make sense of the world. This shows glaringly in the sample narrative from the Continent-the Jama murder, the inquiry, and the public outcry-we analyse in this paper. Apparently in the same racist crime category as the case of Stephen Lawrence's murder (in Greenwich on 22 April 1993) with the ensuing still current controversy in the UK, the Jama case (some 20 years ago) stood apart because of a very unusual element: the eyewitnesses identifying the suspects were a group of football referees and linesmen eating together at a restaurant, and seeing the sleeping man as he was set ablaze in a public park nearby. Professional background as witnesses-cum-factfinders in a mass sport, and public perceptions of their required characteristics, couldn't but feature prominently in the public perception of the case, even more so as the suspects were released by the magistrate conducting the inquiry. There are sides to this case that involve different expected effects in an inquisitorial criminal procedure system from the Continent, where an investigating magistrate leads the inquiry and prepares the prosecution case, as opposed to trial by jury under the Anglo-American adversarial system. In the JAMA prototype, we tried to approach the given case from the coign of vantage of narrative models from AI.
Resumo:
This paper describes progress on a project to utilise case based reasoning methods in the design and manufacture of furniture products. The novel feature of this research is that cases are represented as structures in a relational database of products, components and materials. The paper proposes a method for extending the usual "weighted sum" over attribute similarities for a ·single table to encompass relational structures over several tables. The capabilities of the system are discussed, particularly with respect to differing user objectives, such as cost estimation, CAD, cutting scheme re-use, and initial design. It is shown that specification of a target case as a relational structure combined with suitable weights can fulfil several user functions. However, it is also shown that some user functions cannot satisfactorily be specified via a single target case. For these functions it is proposed to allow the specification of a set of target cases. A derived similarity measure between individuals and sets of cases is proposed.
Resumo:
One of the fundamental questions regarding the temporal ontology is what is time composed of. While the traditional time structure is based on a set of points, a notion that has been prevalently adopted in classical physics and mathematics, it has also been noticed that intervals have been widely adopted for expre~sion of common sense temporal knowledge, especially in the domain of artificial intelligence. However, there has been a longstanding debate on how intervals should be addressed, leading to two different approaches to the treatment of intervals. In the first, intervals are addressed as derived objects constructed from points, e.g., as sets of points, or as pairs of points. In the second, intervals are taken as primitive themselves. This article provides a critical examination of these two approaches. By means of proposing a definition of intervals in terms of points and types, we shall demonstrate that, while the two different approaches have been viewed as rivals in the literature, they are actually reducible to logically equivalent expressions under some requisite interpretations, and therefore they can also be viewed as allies.
Resumo:
In this paper we propose a method for interpolation over a set of retrieved cases in the adaptation phase of the case-based reasoning cycle. The method has two advantages over traditional systems: the first is that it can predict “new” instances, not yet present in the case base; the second is that it can predict solutions not present in the retrieval set. The method is a generalisation of Shepard’s Interpolation method, formulated as the minimisation of an error function defined in terms of distance metrics in the solution and problem spaces. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The method is illustrated in the paper with reference to the Irises classification problem. It is evaluated with reference to a simulated nominal value test problem, and to a benchmark case base from the travel domain. The algorithm is shown to out-perform conventional nearest neighbour methods on these problems. Finally, GSNN is shown to improve in efficiency when used in conjunction with a diverse retrieval algorithm.
Resumo:
Numerical models are important tools used in engineering fields to predict the behaviour and the impact of physical elements. There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. This paper considers how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor problem. The paper describes example problems faced by design engineers in this context and the issues that need to be considered in this approach. Solution of these problems require methods to handle constraints in both the retrieval phase and the adaptation phase of a typical CBR cycle. We show approaches to the solution of these problesm via a CBR tool.
Resumo:
This paper examines different ways for measuring similarity between software design models for the purpose of software reuse. Current approaches to this problem are discussed and a set of suitable similarity metrics are proposed and evaluated. Work on the optimisation of weights to increase the competence of a CBR system is presented. A graph matching algorithm and associated metrics capturing the structural similarity between UML class diagrams is presented and demonstrated through an example case.
Resumo:
There are mainly two known approaches to the representation of temporal information in Computer Science: modal logic approaches (including tense logics and hybrid temporal logics) and predicate logic approaches (including temporal argument methods and reified temporal logics). On one hand, while tense logics, hybrid temporal logics and temporal argument methods enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although current reified temporal logics provide greater expressive power, most of them lack of complete and sound axiomatic theories. In this paper, we propose a new reified temporal logic with a clear syntax and semantics in terms of a sound and complete axiomatic formalism which retains all the expressive power of the approach of temporal reification.
Resumo:
This paper examines different ways of measuring similarity between software design models for Case Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and behavioural aspects of similarity between software design models. Similarity metrics for comparing static class structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a simple evaluation of the approach is presented and discussed.
Resumo:
Generally speaking, the term temporal logic refers to any system of rules and symbolism for representing and reasoning about propositions qualified in terms of time. In computer science, particularly in the domain of Artificial Intelligence, there are mainly two known approaches to the representation of temporal information: modal logic approaches including tense logic and hybrid temporal logic, and predicate logic approaches including temporal arguement method and reified temporal logic. On one hand, while tense logic, hybrid temporal logic and temporal argument method enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although reified temporal logic provides greater expressive power, most of the current systems following the temporal reification lack of complete and sound axiomatic theories. With there observations in mind, a new reified temporal logic with clear syntax and semantics in terms of a sound and complete axiomatic formalism is introduced in this paper, which retains all the expressive power of temporal reification.
Resumo:
Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.
Resumo:
Exam timetabling is one of the most important administrative activities that takes place in academic institutions. In this paper we present a critical discussion of the research on exam timetabling in the last decade or so. This last ten years has seen an increased level of attention on this important topic. There has been a range of significant contributions to the scientific literature both in terms of theoretical andpractical aspects. The main aim of this survey is to highlight the new trends and key research achievements that have been carried out in the last decade.We also aim to outline a range of relevant important research issues and challenges that have been generated by this body of work.
We first define the problem and review previous survey papers. Algorithmic approaches are then classified and discussed. These include early techniques (e.g. graph heuristics) and state-of-the-art approaches including meta-heuristics, constraint based methods, multi-criteria techniques, hybridisations, and recent new trends concerning neighbourhood structures, which are motivated by raising the generality of the approaches. Summarising tables are presented to provide an overall view of these techniques. We discuss some issues on decomposition techniques, system tools and languages, models and complexity. We also present and discuss some important issues which have come to light concerning the public benchmark exam timetabling data. Different versions of problem datasetswith the same name have been circulating in the scientific community in the last ten years which has generated a significant amount of confusion. We clarify the situation and present a re-naming of the widely studied datasets to avoid future confusion. We also highlight which research papershave dealt with which dataset. Finally, we draw upon our discussion of the literature to present a (non-exhaustive) range of potential future research directions and open issues in exam timetabling research.
Resumo:
The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.