912 resultados para Articular instability
Resumo:
Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
Resumo:
A number of reports have suggested that many of the problems currently associated with the use of microneedle (MN) arrays for transdermal drug delivery could be addressed by using drug-loaded MN arrays prepared by moulding hot melts of carbohydrate materials.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
A comprehensive study of the Debye-Huckel repulsive and ion wakefield induced attractive potentials around a dust grain is presented, including ion flow. It is found that the modified interaction potential (especially the attractive wakefield force) can cause instability of linear dust oscillations propagating in a dusty plasma crystal composed of dust grains in a horizontal arrangement suspended in the sheath region near a conducting wall (electrode). The dependence of dust lattice modes on the ion flow is studied, revealing instability of dust lattice modes for certain values of the ion flow speed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear coupling between two perpendicularly propagating ( with respect to the external magnetic field direction) upper-hybrid ( UH) waves in a uniform magnetoplasma is considered, taking into account quasi-stationary density perturbations which are driven by the UH wave ponderomotive force. This interaction is governed by a pair of coupled nonlinear Schrodinger equations ( CNLSEs) for the UH wave envelopes. The CNLSEs are used to investigate the occurrence of modulational instability. Waves in the vicinity of the UH resonance are considered, so that the group dispersion terms for both waves are approximately equal, but the UH wave group velocities may be different. It is found that a pair of unstable UH waves ( obeying anomalous group dispersion) yields an increased instability growth rate, while a pair of stable UH waves ( individually obeying normal group dispersion) remains stable for equal group velocities, although it is destabilized by a finite group velocity mismatch. Stationary nonlinear solutions of the CNLSEs are presented.
Resumo:
The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made on the signs ( or magnitudes) of the relevant parameters like the scattering lengths and the coupling coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to the individual ( uncoupled) state.
Resumo:
The oblique modulational instability of dust acoustic (DA) waves in an unmagnetized warm dusty plasma with nonthermal ions, taking into account dust grain charge variation (charging), is investigated. A nonlinear Schrodinger-type equation governing the slow modulation of the wave amplitude is derived. The effects of dust temperature, dust charge variation, ion deviation from Maxwellian equilibrium (nonthermality) and constituent species' concentration on the modulational instability of DA waves are examined. It is found that these parameters modify significantly the oblique modulational instability domain in the k-theta plane. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations are also discussed. The findings of this investigation may be useful in understanding the stable electrostatic wave packet acceleration mechanisms close to the Moon, and also enhances our knowledge on the occurrence of instability associated to pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.
Resumo:
Microsatellite instability (MSI) is a characteristic molecular phenotype of tumors from the hereditary nonpolyposis colorectal cancer (Lynch) syndrome. Routine MSI screening of tumors in patients is an efficient prescreening tool for the population-based detection of Lynch syndrome in the absence of family cancer history. We describe here the optimization of a denaturing high performance liquid chromatography (DHPLC) assay for MSI analysis with the