1000 resultados para Arquitectura del paisatge -- Espanya -- Sevilla
Resumo:
Programa de doctorado: Ingeniería de telecomunicación avanzada.
Resumo:
[ES] El Detector de Efectos Stroop (SED - Stroop Effect Detector), es una herramienta informática de asistencia, desarrollada a través del programa de investigación de Desarrollo Tecnológico Social de la Universidad de Las Palmas de Gran Canaria, que ayuda a profesionales del sector neuropsicológico a identificar problemas en la corteza orbitofrontal de un individuo, usándose para ello la técnica ideada por Schenker en 1998. Como base metodológica, se han utilizado los conocimientos adquiridos en las diferentes materias de la adaptación al grado en Ingeniería Informática como Gestión del Software, Arquitectura del Software y Desarrollo de Interfaces de Usuario así como conocimiento adquirido con anterioridad en asignaturas de Programación e Ingeniería del Software I y II. Como para realizar este proyecto sólo el conocimiento informático no era suficiente, he realizado una labor de investigación acerca del problema, teniendo que recopilar información de otros documentos científicos que abordan el tema, consultas a profesionales del sector como son el Doctor Don Ayoze Nauzet González Hernández, neurólogo del hospital Doctor Negrín de Las Palmas de Gran Canaria y el psicólogo Don José Manuel Rodríguez Pellejero que habló de este problema en clase del máster de Formación del Profesorado y que actualmente estoy cursando. Este trabajo presenta el test de Stroop con las dos versiones de Schenker: RCN (Reading Color Names) y NCW (Naming Colored Words). Como norma general, ambas pruebas presentan ante los sujetos estudios palabras (nombres de colores) escritas con la tinta de colores diferentes. De esta forma, el RCN consiste en leer la palabra escrita omitiendo la tonalidad de su fuente e intentando que no nos influya. Por el contrario, el NCW requiere enunciar el nombre del color de la tinta con la que está escrita la palabra sin que nos influya que ésta última sea el nombre de un color.
Resumo:
Análisis, diseño, prototipado y desarrollo de un prototipo de videojuego del género plataformas en 2D. El análisis comienza a partir de una idea original, por lo que se incluye un estudio y prototipado de las mecánicas candidatas. Siguiendo los principios de la Ingeniería del Software, se lleva a cabo un documento de diseño y de arquitectura del software. La implementación se desarrolla siguiendo la arquitectura previamente establecida y se han añadido diferentes plataformas de control (mando, teclado y ratón) para enriquecer la experiencia de usuario. El desarrollo de este trabajo incluye un fuerte componente de diseño de videojuegos, incluyendo el estudio de referencias, análisis de mecánicas, evaluación de la experiencia del jugador y diseño de niveles. Nos centraremos en la preproducción de un juego, fase en la que se toman todas las decisiones sobre todos los aspectos finales de un videojuego. Tras un estudio de los motores de videojuego disponibles para el público, se ha utilizado el motor Unity 3D para la implementación final, llevando a cabo el desarrollo en la versión beta de Unity 4.6. A través del motor de videojuego podemos trabajar con animaciones, audio, interfaz, etc. El lenguaje utilizado es C#. Como complemento se incluye un breve estudio de la historia de los videojuegos, los diferentes motores de videojuegos actuales y nociones del diseño de videojuegos.
Resumo:
Se presenta un relevamiento fotográfico realizado el 14/05/2005, donde se describen los principales sectores de la Escuela Normal de Alem, obra de arquitectura de Mario Soto y Raúl Rivarola, producida a partir del impulso de la provincialización de Misiones el 10 de diciembre de 1953, en el gobierno del presidente Juan Domingo Perón. La obra fue declarada Monumento Histórico Nacional en Octubre de 2012, cuando se cumplieron treinta años de la muerte del arq Soto en el exilio gallego. El legajo lo produjo el grupo de investigación Patrimonio, educación y turismo: la arquitectura del Movimiento Moderno en Misiones. 16H313, Secretaria de Investigación y Posgrado, Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Misiones
Resumo:
Las FPAA´s son dispositivos analógicos programables. Estos dispositivos se basan en el uso de condensadores conmutados junto con amplificadores operacionales. Este tipo de tecnología presenta una serie de ventajas, ya que combinan las ventajas de dispositivos digitales, como la reprogramación en función de las variables del entorno que los rodean, con la diferencia de ser dispositivos analógicos, permitiendo la realización de una amplia gama de diseños analógicos en un solo chip. En este proyecto se ha realizado un estudio sobre el funcionamiento de los condensadores conmutados y su uso en el dispositivo AN221E04 del fabricante Anadigm. Una vez descrita la arquitectura del AN221E04 y explicadas las bases del funcionamiento de los condensadores conmutados, utilizando como ejemplo los modelos facilitados por Anadigm, se desarrolla un modelo de amplificador de instrumentación teórico y se describe la metodología para su implementación en un AN221E04 con el software Anadigm Designer 2. Una vez implementado este modelo de amplificador de instrumentación se han efectuado una serie de pruebas con el objetivo de estudiar la capacidad de estos dispositivos. Dichas pruebas ponen de manifiesto que las FPAA´s tienen una serie de ventajas a tener en cuenta a la hora de realizar diseños analógicos. La precisión obtenida por el modelo de amplificador de instrumentación realizado es más que aceptable, llegando a obtener errores de ganancia inferiores al 1% con ganancias de 200V/V sin tener la necesidad de realizar grandes ajustes. En las conclusiones de este estudio se exponen tanto ventajas como inconvenientes de la utilización de FPAA´s en diseños analógicos. La principal ventaja de este uso es el ahorro de costes, ya que una vez desarrollada una plataforma de diseño, la capacidad de reconfiguración permite utilizar dicha plataforma para un amplio abanico de aplicaciones, reduciendo el número de componentes y simplificando las etapas de diseño. Como desventaja, las FPAA´s tienen una serie de limitaciones qué hay que tener en cuenta en ciertos casos pudiendo hacer irrealizable un diseño concreto; como puede ser el valor máximo o mínimo de ganancia. The FPAA's are programmable analog devices. These devices rely on the use of switched capacitors together with operational amplifiers. This type of technology has a number of advantages, because they combine the advantages of digital devices such as the reprogramming function of the variables of the surrounding environment, with the difference being analog devices, allowing the realization of a wide range of designs analog on a single chip. This project has conducted a study on the operation of the switched capacitor and its use in the device AN221E04 from Anadigm. Having described the architecture of AN221E04 and explained the basis for the operation of the switched capacitor, using the example models provided by Anadigm is developing an instrumentation amplifier theory model and describes the methodology for implementation in a AN221E04 with the Anadigm Designer 2 software. Once implemented this instrumentation amplifier model, have made a series of tests in order to study the ability of these devices. These tests show that the FPAA's have a number of advantages to take into account when making analog designs. The accuracy obtained by the instrumentation amplifier model is made more than acceptable, earning gain errors of less than 1% with gains of 200V / V without the need for major adjustments. The conclusions of this study are presented both advantages and disadvantages of using FPAA's in analog designs. The main advantage of this application is the cost savings, because once developed a platform for design, reconfiguration capability allows you to use this platform for a wide range of applications, reducing component count and simplifying design stages. As a disadvantage, the FPAA's have a number of limitations which must be taken into account in certain cases may make impossible a specific design, such as the maximum or minimum gain, or the magnitude of the possible settings.
Resumo:
El presente proyecto fin de carrera consiste en el diseño, desarrollo e implementación de una aplicación informática cuya función sea la identificación de distintos ficheros de imagen, audio y video y la interpretación y presentación de los metadatos asociados a los mismos. El software desarrollado, EXTRACTORDATOS_LBS, reconocerá el tipo de formato del fichero bajo estudio a partir del análisis de los bytes de identificación contenidos en la cabecera del archivo. En base a la información registrada en dicha cabecera, la aplicación interpretará el contenido de los metadatos asociados al fichero, mostrando por pantalla aquellos que resulten de interés para el análisis de los mismos. Previamente a la implementación del software se acomete el análisis teórico de los formatos de diversos archivos multimedia, recogidos en múltiples normas y recomendaciones. Tras esa identificación, se procede al desarrollo de la aplicación EXTRACTORDATOS_LBS , que informa de los parámetros de interés contenidos en las cabeceras de los archivos. El desarrollo se ilustra con los diagramas conceptuales asociados a la arquitectura del software implementado. De igual forma, se muestran las salidas por pantalla de una serie de ficheros de muestra, y se presenta el manual de usuario de la aplicación. La versión electrónica de este documento acompaña el ejecutable que permite el análisis de los archivos. This final project consists in the design, development and implementation of a computer application whose function is the identification of different image, audio and video files and the interpretation and presentation of their metadata. The software developed, EXTRACTORDATOS_LBS, will recognize the type of the file under study through the analysis of the identification bytes contained on the file’s header. Based on information registered in this header, the application will interpret the metadata content associated to file, displaying the most interesting ones for their analysis. Prior to the software implementation, a theoretical analysis of the different formats of media files is undertaken. After this identification, the application EXTRACTORDATOS_LBS is developed. This software analyzes and displays the most interesting parameters contained in multimedia file’s header. The development of the application is illustrated with flow charts associated to the architecture of the software. Furthermore, some graphic examples of use of the program are included, as well as the user’s manual. The electronic version of this document attaches the executable file that permits file analysis.
Resumo:
El objetivo de esta tesis ha sido el análisis de los procesos patológicos de las bóvedas y los muros de la iglesia del monasterio de Santa María de Moreruela (Zamora). Estos procesos comenzaron en el año 1823 pero se acentuaron en la década de 1880 dando lugar a que el Monasterio empezará a desarrollar un estado de ruina progresiva en el corto espacio de tiempo de unos cincuenta años. La tesis, a lo largo de los diez capítulos en que se concreta, trata, de lo general a lo particular, de establecer los criterios de la Arquitectura del Císter y sus elementos constructivos, para conocer en profundidad las bases de diseño del monasterio y después recabar toda la información en la bibliografía y en otros documentos, que existen sobre el Monasterio de Santa María de Moreruela y en particular de su iglesia. Estudiados y analizados, en profundidad, el monasterio y la Iglesia, a través, de la bibliografía y la documentación encontrada, se procede al desarrollo planimétrico de los mismos. Este desarrollo se acomete al “estilo tradicional” y con la técnica del laser 3D. De esta manera se reconstruye en papel el monasterio antes de la ruina, así como algunos elementos constructivos, desaparecidos en la actualidad, posibilitando su reconstrucción en un futuro. Tras los trabajos de representación gráfica se redactan fichas técnicas sobre la patología encontrada en la iglesia y posteriormente se realizan ensayos sobre las piedras: ensayos geomecánicos, de alterabilidad y de resistencia mecánica mediante ultrasonidos; ensayos sobre el terreno mediante sísmica de refracción, así como el ensayo Lambe y el ensayo con el edómetro para clasificar el nivel de expansividad de las arcillas. Todo esto permite concluir, que la causa fundamental de la ruina acelerada que sufrieron la bóveda y los muros la iglesia fue debida, fundamentalmente, a la pérdida de masa de las dovelas, así como al mal funcionamiento de los drenajes que tenían como objetivo aislar de las variaciones de humedad, el terreno de arcillas expansivas, sobre el que apoyan los elementos de cimentación, así como recomendar algunas medidas para preservar los restos.
Resumo:
El modelo de computaci¿on en la nube (cloud computing) ha ganado mucha popularidad en los últimos años, prueba de ello es la cantidad de productos que distintas empresas han lanzado para ofrecer software, capacidad de procesamiento y servicios en la nube. Para una empresa el mover sus aplicaciones a la nube, con el fin de garantizar disponibilidad y escalabilidad de las mismas y un ahorro de costes, no es una tarea fácil. El principal problema es que las aplicaciones tienen que ser rediseñadas porque las plataformas de computaci¿on en la nube presentan restricciones que no tienen los entornos tradicionales. En este artículo presentamos CumuloNimbo, una plataforma para computación en la nube que permite la ejecución y migración de manera transparente de aplicaciones multi-capa en la nube. Una de las principales características de CumuloNimbo es la gestión de transacciones altamente escalable y coherente. El artículo describe la arquitectura del sistema, así como una evaluaci¿on de la escalabilidad del mismo.
Resumo:
El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador de vídeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero de vídeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame de vídeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores de vídeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros de vídeo con el resultado de cada módulo procesador de vídeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.