951 resultados para Arduino Due
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
MOTIVATION: Comparative analyses of gene expression data from different species have become an important component of the study of molecular evolution. Thus methods are needed to estimate evolutionary distances between expression profiles, as well as a neutral reference to estimate selective pressure. Divergence between expression profiles of homologous genes is often calculated with Pearson's or Euclidean distance. Neutral divergence is usually inferred from randomized data. Despite being widely used, neither of these two steps has been well studied. Here, we analyze these methods formally and on real data, highlight their limitations and propose improvements. RESULTS: It has been demonstrated that Pearson's distance, in contrast to Euclidean distance, leads to underestimation of the expression similarity between homologous genes with a conserved uniform pattern of expression. Here, we first extend this study to genes with conserved, but specific pattern of expression. Surprisingly, we find that both Pearson's and Euclidean distances used as a measure of expression similarity between genes depend on the expression specificity of those genes. We also show that the Euclidean distance depends strongly on data normalization. Next, we show that the randomization procedure that is widely used to estimate the rate of neutral evolution is biased when broadly expressed genes are abundant in the data. To overcome this problem, we propose a novel randomization procedure that is unbiased with respect to expression profiles present in the datasets. Applying our method to the mouse and human gene expression data suggests significant gene expression conservation between these species. CONTACT: marc.robinson-rechavi@unil.ch; sven.bergmann@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
BACKGROUND: Recurrent hepatitis C virus infection after liver transplantation is associated with reduced graft and patient survival. Re-transplantation for graft failure due to recurrent hepatitis C is controversial and not performed in all centers. CASE PRESENTATION: We describe a 54-year-old patient with hepatitis C virus genotype 1b infection and a null response to pegylated interferon-α and ribavirin who developed decompensated graft cirrhosis 6 years after a first liver transplantation. Treatment with sofosbuvir and ribavirin allowed for rapid negativation of serum HCV RNA and was well tolerated despite advanced liver and moderate renal dysfunction. Therapeutic drug monitoring did not reveal any clinically significant drug-drug interactions. Despite virological response, the patient remained severely decompensated and re-transplantation was performed after 46 days of undetectable serum HCV RNA. The patient is doing well 12 months after his second liver transplantation and remains free of hepatitis C virus. CONCLUSIONS: The use of directly acting antivirals may allow for successful liver re-transplantation for recipients who remain decompensated despite virological response and is likely to improve the outcome of liver re-transplantation for end-stage recurrent hepatitis C.
Resumo:
Seizures can be an early symptom of Alzheimer's disease (AD) and can precede cognitive decline. Early epilepsy in AD can mimic transient epileptic amnesic syndrome (TEAS) or epileptic amnesic syndrome. We report the case of a patient who started a cerebrospinal fluid (CSF)-proven AD with partial seizures and TEAS that secondarily became a cortical posterior atrophy syndrome. CSF biomarkers showed a high amyloid production, amyloidopathy, and high level of total tau and p-Tau. This observation adds data to the complex AD-early epilepsy interactions and illustrates that atypical AD can cause a TEAS. Possible red flags for an underlying neurodegenerative process in TEAS are discussed.