939 resultados para Anti-cancer agents
Resumo:
RESUMO: A infeção é frequente durante a doença crítica, quer como causa da doença crítica quer como complicação da sua evolução. Paradoxalmente, os avanços da medicina moderna aumentaram eles próprios o risco de infeção, ao permitir a sobrevida até idades avançadas, ao criar um novo grupo de doentes imunodeprimidos, nomeadamente doentes tratados com fármacos que interferem com as suas defesas naturais (corticóides, citostáticos), ao aumentar o tempo de vida de hospedeiros com comorbilidades debilitantes. Os antibióticos são um dos elos essenciais no tratamento da infeção. Contudo o seu uso também promove a seleção e crescimento de bactérias resistentes. Para além disso as doses convencionais de antibióticos foram selecionadas numa altura em que a resistência era um fenómeno raro e podem não ser atualmente as mais adequadas. Existe hoje muita evidência acumulada que os doentes críticos sofrem alterações da sua farmacocinética (PK) que podem facilitar a ocorrência de falência terapêutica ou de toxicidade tanto por sub como por sobredosagem de antibióticos. Essas alterações são complexas e difíceis de estudar. Finalmente, também a farmacodinâmica (PD) dos antibióticos pode estar alterada nesta população, podendo haver necessidade de ajustar os alvos terapêuticos de forma individual. O objetivo deste trabalho foi investigar a relação entre a terapêutica antibiótica, as suas características PK e PD, a carga bacteriana e o prognóstico dos doentes críticos. O plano de investigação incluiu: 1. Dados da epidemiologia portuguesa de doentes críticos com infeção; 2. Avaliação da relação entre a carga bacteriana, o tempo até ao início do tratamento antibiótico e o prognóstico dos doentes críticos; 3. Avaliação da evolução da PK durante o tratamento da infeção; 4. Um estudo multicêntrico para avaliação da eficácia da terapêutica com um β- lactâmico doseado de acordo com a relação PK/PD. Na introdução é descrita a importância dos antibióticos, a sua origem e o problema crescente das resistências bacterianas relacionadas com o seu emprego e abuso. É salientada a importância de racionalizar a posologia, de acordo com os conceitos de PK e de PD. No Capítulo 1 são apresentados dados de epidemiologia portuguesa de infeção em doentes críticos, sobretudo retirados de dois estudos prospetivos, observacionais, os quais incluíram mais de 50% da capacidade de internamento em cuidados intensivos existente em Portugal. No Capítulo 2 são descritos os conceitos de PK e as suas alterações nos doentes críticos. De seguida são revistos os conceitos de PD de antibióticos e a sua aplicação a esta população, em particular durante as infeções graves (Capítulo 3). Nos capítulos seguintes são aprofundadas estas alterações da PK nos doentes críticos e as suas causas, de forma a destacar a importância da monitorização da concentração dos antibióticos. São apresentados os dados duma revisão sistemática de PK de antibóticos nesta população (Capítulo 4), pormenorizadas as alterações da PD que comprometem a eficácia da terapêutica antibiótica, facilitam o desenvolvimento de resistências e podem levar a falência terapêutica (Capítulo 5). Consequentemente a compreensão global destas alterações, da sua relevância clínica e a revisão da evidência disponível facilitou o desenvolvimento do próprio plano global de investigação (Capítulos 6 e 7). No Capítulo 6.1 são descritos os antibióticos tempo-dependente e a importância de aumentar o seu tempo de perfusão. Foi desenhado um estudo multicêntrico para comparar a eficácia e segurança da perfusão contínua da piperacilina tazobactam (um antibiótico β-lactâmico associado a um inibidor de β-lactamases) com a mesma dose do antibiótico, administrado em dose convencional, intermitente. A importância de dosear corretamente os antibióticos concentração-dependente foi também avaliada num estudo a primeira dose dos aminoglicosídeos (Capítulo 6.2). Outras estratégias para melhorar os resultados assistenciais dos doentes infetados são abordadas no Capítulo 7, em particular a importância da terapêutica antibiótica precoce, a avaliação da carga bacteriana e a compreensão da variação da PK ao longo do tratamento da infeção. Foi desenvolvido um algoritmo de abordagem terapêutica que incluiu estas alterações da PK e da PD nos doentes críticos. Finalmente no Capítulo 8 são descritos mecanismos de desenvolvimento das resistências bacterianas bem como estratégias para a sua abordagem. O Capítulo final (Capítulo 9) aponta um plano para futuras áreas de trabalho. O elemento chave identificado neste trabalho de investigação é o reconhecimento da variabilidade significativa da PK dos antibióticos durante a doença crítica, a qual condiciona a sua posologia. Estas alterações estão relacionadas com a própria gravidade da doença e tendem a diminuir ao longo do seu tratamento. No entanto nem a gravidade da doença nem as características individuais as permitem prever de forma aceitável pelo que a utilização duma posologia universal, independente da situação clínica concreta, pode ser inadequada. As estratégias para melhorar os resultados assistenciais dos doentes críticos infetados devem ser baseadas na individualização da posologia antibiótica de acordo com os princípios da PK e da PD, preferencialmente apoiadas em doseamentos da sua concentração. ------------------------------------ ABSTRACT: Infection commonly occurred during critical illness, either as a cause or complicating the course of the disease. Advances in medicine had paradoxically increase the risk of infection, both by improving survival to older ages and by introducing a new group of immunosuppressed patients, those who are treated with drugs that interfere with their natural defenses (corticosteroids, cytostatics) and those who survived longer with aggressive diseases. Antibiotics are of paramount importance for treating infection. However the use of these drugs also promote the selection and growth of resistant bacteria. Furthermore conventional antibiotic doses were calculated for less severe patients during a time when resistance was rare. Nowadays there is increasing evidence that critically ill patients experiment altered pharmacokinetics (PK) that may lead to therapeutic failure and/or drug toxicity. Equally, such PK alterations are complex and challenging to investigate. Finally pharmacodynamics (PD) may also be different in this population and antibiotic targets may need to be tailored to the individual patient. The aim of this research was to investigate the relationship between antibiotic therapy, its PK and PD, bacterial burden and critically ill patients outcomes. The research plan comprised of: 1. Epidemiological portuguese data of critically ill infected patients; 2. Relationship between burden of bacteria, time until the start of antibiotics and patient outcomes; 3. Evaluation of PK during treatment of infection; 4. A multicentre study evaluating PK guided β-lactam therapy. The introductory chapter outlines the importance of antibiotics, its origins, the problem of increasing bacteria resistance, related to its use and overuse and the importance of rational drug dosing using PK and PD concepts. In Chapter 1 portuguese epidemiological data of infections in critically ill patients is presented, mostly coming from two prospective observational studies, encompassing more than 50% of critically ill beds available in Portugal. Chapter 2 describes the concepts of PK and the changes occurring in critically ill patients. This is followed by a review of the concepts of PD of antibiotics and its application to this population, especially during severe infections (Chapter 3). In the following chapter these changes in antibiotics PK in critical illness are and its causes are detailed, to outline the importance of therapeutic drug monitoring. Data on a systematic review of antibiotics PK in those patients is provided (Chapter 4). The following chapter (Chapter 5) elucidates important changes in PD, that compromises antibiotic therapy, facilitate the occurrence of resistance and may lead to therapeutic failure. Thus, an understanding of the clinical problem and available evidence facilitated the development of a comprehensive research plan (Chapter 6 and Chapter 7). Chapter 6.1 describes time-dependent antibiotics and the importance of extending its perfusion time. A multicenter study was designed to compare the continuous infusion of piperacillin tazobactam (a β-lactam antibiotic) with the same daily dose, prescribed in a conventional, intermittent dose. The importance of correct dosing of antibiotics was also assessed through a study addressing aminoglycoside (a concentration-dependent antibiotic) therapy (Chapter 6.2), focusing on its first dose. Strategies to improve severe infected patients outcomes were addressed in Chapter 7, namely the importance of early antibiotic therapy, assessing the burden of bacteria and understanding changes in antibiotic concentration during the course of infection. An algorithm to include all the described changes in both PK and PD of critically ill patients was developed. Finally in Chapter 8 mechanisms of the increasing resistance of bacteria are described and strategies to address that problem are proposed. The closing chapter (Chapter 9) lays a roadmap for future work. The key finding of this research is the significant variability of the antibiotics PK during critical illness, which makes dosing a challenging issue. These changes are related to the severity of the infection itself and improve through the course of the disease. However neither disease severity nor individual characteristics are useful to predict PK changes. Therefore, the use of a universal dose approach, regardless of the individual patient, may not be the best approach. Strategies to improve patients’ outcomes should be based on tailoring antibiotics to the individual patient, according to PK and PD principles, preferentially supported by therapeutic drug monitoring.
Resumo:
In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi was observed. The antimicrobial activity of CM4-A200 was dependent on the physical contact of cells with the film surface. Furthermore, CM4-A200 films did not reveal a cytotoxic effect against both normal human skin fibroblasts and human keratinocytes. Finally, we have developed an optimized ex vivo assay with pig skin demonstrating the antimicrobial properties of the CM4-A200 cast films for skin applications.
Resumo:
Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of the existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to discover novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.
Resumo:
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.
Resumo:
INTRODUCTION & OBJECTIVES: Urothelial tumors of upper urinary tract are ranked among the most common types of cancers worldwide. The current standard therapy to prevent recurrence is intravesical Bacillus Calmetteâ Guerin (BCG) immunotherapy, but it presents several disadvantages such as BCG failure and intolerance. Another way is to use chemotherapy, which is generally better tolerated that BCG. In this case, drugs such as epirubicin, doxorubicin, paclitaxel and gemcitabine are used. Nevertheless, intravesical chemotherapy only prevents recurrence in the short-term. These failings can be partially attributed to the short residence time and low bioavailability of the drug within the upper urinary tract and the cancer cells, resulting in a need for frequent drug instillation. To avoid these problems, biodegradable ureteral stents impregnated by supercritical fluid CO2 (SCF) with each of the four anti-cancer drugs were produced. MATERIAL & METHODS: Four formulations with different concentrations of gelatin and alginate and crosslink agent were tested and bismuth was added to confer radiopaque properties to the stent. The preliminary in vivo validation studies in female domestic pigs was conducted at the University of Minho, Braga, after formal approval by the institutionâ s review board and in accordance with its internal ethical protocol for animal experiments. Paclitaxel, epirubicin, doxorubicin and gemcitabine were impregnated in the stents and the release kinetics was measured in artificial urine solution (AUS) for 9 days by UV spectroscopy in a microplate reader. The anti-tumoral effect of the developed stents in transitional cell carcinoma (TCC) and HUVEC primary cells, used as control, was evaluated. RESULTS: The in vivo validation of this second-generation of ureteral stents performed was herein demonstrated. Biodegradable ureteral stents were placed in the ureters of a female pigs, following the normal surgical procedure. The animals remained asymptomatic, with normal urine flow. The in vitro release study in AUS of the stent impregnated showed a higher release in the first 72h for the four anti-cancer drugs impregnated after this time the plateau was achieved and the stent degraded after 9 days. The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. CONCLUSIONS: The use of biodegradable ureteral stent in urology clinical practice not only reduce the stent-related symptoms but also open new treatment therapyâ s, like in urothelial tumors of upper urinary tract. Furthermore, we have demonstrated the clinical validation in vivo pig model. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
El presente proyecto tiene como objetivo estudiar, a nivel celular y molecular, los mecanismos inmuno-endócrinos que participan en la proliferación de células lactotropas normales y tumorales frente a procesos inflamatorios inducidos experimentalmente. Una particular atención se pondrá al evaluar la contribución de IL-6 como citoquina intrahipofisaria durante el desarrollo tumoral y su rol como señal paracrina/autocrina en la senescencia hipofisaria. Debido a que agentes inflamatorios y anti-inflamatorios pueden inducir alteraciones en el crecimiento y la función hipofisaria, no se descartaría que, en el curso de una inflamación, como la inducida por el lipopolisacárido bacteriano LPS, puedan ocurrir modificaciones en el índice proliferativo de las células lactotropas y/o en la secreción de su producto hormonal, la prolactina. Dado el auge en las investigaciones referidas al campo de la modulación inmuno-endócrina, es que planteamos investigar la participación de TLR4, componente crucial del complejo proteico que inicia la señal LPS, en hipófisis normales y tumorales inducidas por estrógeno así como también en la línea celular somatolactotrópica GH3B6. Dentro de las vías de transducción de señales involucradas se determinará la participación de MAPK-ERK1/2 y de PI3K asi como la contribución de NF-kB en la regulación del crecimiento celular inducido por IL-6/LPS mediante el uso de inhibidores específicos. La microscopía electrónica y confocal, resultarán de fundamental importancia para valorar los procesos de translocación nuclear de NF-kB como así también para definir la localización ultraestructural de los mediadores mencionados. Además, se valorará el mecanismo de senescencia celular hipofisaria mediante parámetros morfológicos, bioquímicos y ultraestructurales durante el desarrollo de prolactinomas inducidos experimentalmente. Finalmente dilucidar las posibles vías de transducción de señales que se desencadenan frente a estímulos inflamatorios/proliferativos podría explicar algunos aspectos moleculares sobre la función de control del ciclo celular y las limitaciones de crecimiento en adenomas hipofisarios que subyacen en la falta de progresión de estos tumores a la malignidad. The aim of the present project is to study the immuno-endocrine mechanisms involved in the proliferation of normal and tumoral lactotrophs experimentally induced by inflammatory factors. Also, the contribution of IL-6 as a paracrine / autocrine signal in the pituitary senescence will be assessed along tumor development induced by estrogen treatment. Considering that both, inflammatory and anti-inflammatory agents can modify the pituitary function, it is possible that in the course of inflammation, as induced by bacterial lipopolysaccharide LPS, some alteration may occur in the proliferative index of lactotrophs and / or in the PRL secretion. Our main objective is to investigate the cellular and molecular mechanisms involved by the activation of TLR4, a crucial component of the protein complex initiated by LPS, in normal and pathological pituitaries induced by estrogen as well as in the GH3B6 cell line. The participation of MAPK-ERK1 / 2 and PI3K signaling pathway and the contribution of NF-kB in the proliferative responses triggered by IL-6/LPS will be analyzed by using specific inhibitors. Confocal microscopy analysis is essential to assess the process of nuclear translocation of NF-kB as well as the use of electron microscopy to define the ultrastructural localization of the above mentioned mediators. In addition, the mechanisms of pituitary cell senescence will be evaluated through morphological, biochemical and ultrastructural approaches during the development of experimental prolactinomas. Finally, the elucidation of possible signal transduction pathways which are triggered by inflammatory / proliferative stimuli, would explain some molecular aspects of cell cycle control and limitations in pituitary tumor growth that underlie the lack of progress in these pituitary tumors to malignancy.
Resumo:
Background: Ivabradine is a novel specific heart rate (HR)-lowering agent that improves event-free survival in patients with heart failure (HF). Objectives: We aimed to evaluate the effect of ivabradine on time domain indices of heart rate variability (HRV) in patients with HF. Methods: Forty-eight patients with compensated HF of nonischemic origin were included. Ivabradine treatment was initiated according to the latest HF guidelines. For HRV analysis, 24-h Holter recording was obtained from each patient before and after 8 weeks of treatment with ivabradine. Results: The mean RR interval, standard deviation of all normal to normal RR intervals (SDNN), the standard deviation of 5-min mean RR intervals (SDANN), the mean of the standard deviation of all normal-to-normal RR intervals for all 5-min segments (SDNN index), the percentage of successive normal RR intervals exceeding 50 ms (pNN50), and the square root of the mean of the squares of the differences between successive normal to normal RR intervals (RMSSD) were low at baseline before treatment with ivabradine. After 8 weeks of treatment with ivabradine, the mean HR (83.6 ± 8.0 and 64.6 ± 5.8, p < 0.0001), mean RR interval (713 ± 74 and 943 ± 101 ms, p < 0.0001), SDNN (56.2 ± 15.7 and 87.9 ± 19.4 ms, p < 0.0001), SDANN (49.5 ± 14.7 and 76.4 ± 19.5 ms, p < 0.0001), SDNN index (24.7 ± 8.8 and 38.3 ± 13.1 ms, p < 0.0001), pNN50 (2.4 ± 1.6 and 3.2 ± 2.2 %, p < 0.0001), and RMSSD (13.5 ± 4.6 and 17.8 ± 5.4 ms, p < 0.0001) substantially improved, which sustained during both when awake and while asleep. Conclusion: Our findings suggest that treatment with ivabradine improves HRV in nonischemic patients with HF.
Resumo:
Dans la majorité des cas, les diarrhées aiguës sont bénignes et d'évolution spontanément favorable. Il faut cependant savoir reconnaître les situations pouvant mener à des complications, en l'occurrence identifier les diarrhées invasives, inflammatoires, caractérisées par la présence de fièvre, de douleurs abdominales, de ténesmes, de mucus et, ou de sang dans les selles. Celles-ci sont à distinguer des diarrhées sécrétoires, non invasives, non inflammatoires, sans fièvre, généralement aqueuses et volumineuses. En cas de doute diagnostique, l'identification de leucocytes par microscopie ou test à la lactoferrine dans les selles permet d'évoquer une gastroentérite invasive. Les indications à une antibiothérapie empirique dans l'attente du résultat de la coproculture sont la présence d'un syndrome dysentérique (T > 38°C, > 6 selles/24 heures, douleurs abdominales, diarrhées mucopurulentes), l'âge avancé, des comorbidités significatives, une immunosuppression et la présence d'une prothèse endovasculaire. In the majority of the cases, an acute diarrhea is mild and of spontaneously favorable evolution. It is however necessary to know how to recognize the situations being able to lead to complications, in particular to identify the invasive, inflammatory diarrheas, characterized by the presence of fever, abdominal pains, mucus and\or blood. The identification of leukocytes by microscopy or lactoferrine test is helpful. Empiric quinolones treatment is recommended in the presence of dysenteric syndrome (T > 38 degrees C, > 6 stods/24 h 00, abdominal pain muco-purulent diarrhea), advanced age, significant comorbidities, immunosuppression or presence of an endovascular prothesis
Resumo:
Beta-lactams active against methicillin-resistant Staphylococcus aureus (MRSA) must resist penicillinase hydrolysis and bind penicillin-binding protein 2A (PBP 2A). Cefamandole might share these properties. When tested against 2 isogenic pairs of MRSA that produced or did not produce penicillinase, MICs of cefamandole (8-32 mg/L) were not affected by penicillinase, and cefamandole had a > or =40 times greater PBP 2A affinity than did methicillin. In rats, constant serum levels of 100 mg/L cefamandole successfully treated experimental endocarditis due to penicillinase-negative isolates but failed against penicillinase-producing organisms. This suggested that penicillinase produced in infected vegetations might hydrolyze the drug. Indeed, cefamandole was slowly degraded by penicillinase in vitro. Moreover, its efficacy was restored by combination with sulbactam in vivo. Cefamandole also uniformly prevented MRSA endocarditis in prophylaxis experiments, a setting in which bacteria were not yet clustered in the vegetations. Thus, while cefamandole treatment was limited by penicillinase, the drug was still successful for prophylaxis of experimental MRSA endocarditis.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
Hepatic encephalopathy is a neurological syndrome occurring in patients with liver failure or in those with a large porto-systemic shunt. In cirrhotic patients, the current classification comprises covert and overt encephalopathy. Diagnosis of covert encephalopathy requires sensitive tests. Lactulose and rifaximin are the two leading therapeutic options. Rifaximin is efficacious for maintaining remission from hepatic encephalopathy. Liver transplantation should be discussed in cirrhotic patients with encephalopathy.
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.