972 resultados para Animal bone healing models
Resumo:
Experimental animal models offer possibilities of physiology knowledge, pathogenesis of disease and action of drugs that are directly related to quality nursing care. This integrative review describes the current state of the instrumental and ethical aspects of experimental research with animal models, including the main recommendations of ethics committees that focus on animal welfare and raises questions about the impact of their findings in nursing care. Data show that, in Brazil, the progress in ethics for the use of animals for scientific purposes was consolidated with Law No. 11.794/2008 establishing ethical procedures, attending health, genetic and experimental parameters. The application of ethics in handling of animals for scientific and educational purposes and obtaining consistent and quality data brings unquestionable contributions to the nurse, as they offer subsidies to relate pathophysiological mechanisms and the clinical aspect on the patient.
Resumo:
In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.
Resumo:
BACKGROUND: Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS: DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS: GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS: Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.
Resumo:
To analyze the effects of triamcinolone intravitreal injection on the wound healing processes after argon laser retinal photocoagulation, wild type C57BL/6J mice, 8-12 weeks old underwent a standard argon laser photocoagulation protocol. After pentobarbital anesthesia and pupil dilatation, argon laser lesions were induced (50microm, 400mW, 0.05s). Two photocoagulation impacts created two disc diameters from the optic nerve in both eyes. The photocoagulated mice were divided into four groups: Group I (n=12), photocoagulation controls, did not receive any intravitreous injection. Group II (n=12), received an intravitreous injection of 1microl of balanced salt solution (BSS). Group III (n=12), received an intravitreous injection of 1microl containing 15microg of triamcinolone acetonide (TAAC) in BSS. Two mice from each of these three groups were sacrificed at 1, 3, 7, 14 days and 2 and 4 months after photocoagulation. Group IV (n=10) received 1.5, 3, 7.5, 15, or 30microg of TAAC and were all sacrificed on day 14. The enucleated eyes were subjected to systematic analysis of the cellular remodeling processes taking place within the laser lesion and its vicinity. To this purpose, specific antibodies against GFAP, von Willebrand factor, F4/80 and KI67 were used for the detection of astrocytes, activated Müller cells, vascular endothelial cells, infiltrating inflammatory cells and actively proliferating cells. TUNEL reaction was also carried out along with nuclear DAPI staining. Temporal and spatial observations of the created photocoagulation lesions demonstrate that 24h following the argon laser beam, a localized and well-delineated affection of the RPE cells and choroid is observed in mice in Groups I and II. The inner retinal layers in these mice eyes are preserved while TUNEL positive (apoptotic) cells are observed at the retinal outer nuclear layer level. At this stage, intense staining with GFAP is associated with activated retinal astrocytes and Müller cells throughout the laser path. From day 3 after photocoagulation, dilated new choroidal capillaries are detected on the edges of the laser lesion. These processes are accompanied by infiltration of inflammatory cells and the presence of proliferating cells within the lesion site. Mice in Group III treated with 15microg/mul of triamcinolone showed a decreased number of infiltrating inflammatory cells and proliferating cells, which was not statistically significant compared to uninjected laser treated controls. The development of new choroidal capillaries on the edges of the laser lesion was also inhibited during the first 2 months after photocoagulation. However, on month 4 the growth of new vessels was observed in these mice treated with TAAC. Mice of Group IV did not show any development of new capillaries even with small doses. After argon laser photocoagulation of the mouse eye, intravitreal injection of triamcinolone markedly influenced the retina and choroid remodeling and healing processes. Triamcinolone is a powerful inhibitor of the formation of neovessels in this model. However, this inhibition is transient. These observations should provide a practical insight for the mode of TAAC use in patients with wet AMD.
Resumo:
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human lung and are now recognized as crucial initiators of immune responses in general. They are arranged as sentinels in a dense surveillance network inside and below the epithelium of the airways and alveoli, where thet are ideally situated to sample inhaled antigen. DCs are known to play a pivotal role in maintaining the balance between tolerance and active immune response in the respiratory system. It is no surprise that the lungs became a main focus of DC-related investigations as this organ provides a large interface for interactions of inhaled antigens with the human body. During recent years there has been a constantly growing body of lung DC-related publications that draw their data from in vitro models, animal models and human studies. This review focuses on the biology and functions of different DC populations in the lung and highlights the advantages and drawbacks of different models with which to study the role of lung DCs. Furthermore, we present a number of up-to-date visualization techniques to characterize DC-related cell interactions in vitro and/or in vivo.
Resumo:
Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.
Resumo:
Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.
Resumo:
Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Peering into the field of Alzheimer's disease (AD), the outsider realizes that many of the therapeutic strategies tested (in animal models) have been successful. One also may notice that there is a deficit in translational research, i.e., to take a successful drug in mice and translate it to the patient. Efforts are still focused on novel projects to expand the therapeutic arsenal to 'cure mice.' Scientific reasons behind so many successful strategies are not obvious. This article aims to review the current approaches to combat AD and to open a debate on common mechanisms of cognitive enhancement and neuroprotection. In short, either the rodent models are not good and should be discontinued, or we should extract the most useful information from those models. An example of a question that may be debated for the advancement in AD therapy is: In addition to reducing amyloid and tau pathologies, would it be necessary to boost synaptic strength and cognition? The debate could provide clues to turn around the current negative output in generating effective drugs for patients. Furthermore, discovery of biomarkers in human body fluids, and a clear distinction between cognitive enhancers and disease modifying strategies, should be instrumental for advancing in anti-AD drug discovery.
Resumo:
The present study was conducted at the Department of Rural Engineering and the Department of Animal Morphology and Physiology of FCAV/Unesp, Jaboticabal, SP, Brazil. The objective was to verify the influence of roof slope, exposure and roofing material on the internal temperature of reduced models of animal production facilities. For the development of the research, 48 reduced and dissemble models with dimensions 1.00 × 1.00 × 0.50 m were used. The roof was shed-type, and the models faced to the North or South directions, with 24 models for each side of exposure. Ceramic, galvanized-steel and fibro tiles were used to build the roofs. Slopes varied between 20, 30, 40 and 50% for the ceramic tile and 10, 30, 40 and 50% for the other two. Inside the models, temperature readings were performed at every hour, for 12 months. The results were evaluated in a general linear model in a nested 3 × 4 × 2 factorial arrangement, in which the effects of roofing material and exposure were nested on the factor Slope. Means were compared by the Tukey test at 5% of probability. After analyzing the data, we observed that with the increase in the slope and exposure to the South, there was a drop in the internal temperature within the model at the geographic coordinates of Jaboticabal city (SP/Brazil).
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
Due to technical restrictions of the database system the title of the thesis does not show corretly on this page. Numbers in the title are in superscript. Please see the PDF-file for correct title. ---- Osteomyelitis is a progressive inflammatory disease of bone and bone marrow that results in bone destruction due to an infective microorganism, most frequently Staphylococcus aureus. Orthopaedic concern relates to the need for reconstructive and trauma-related surgical procedures in the fast grow¬ing population of fragile, aged patients, who have an increased susceptibility to surgical site infections. Depending on the type of osteomyelitis, infection may be acute or a slowly progressing, low-grade infection. Peri-implant infections lead to implant loosening. The emerging antibiotic resistance of com¬mon pathogens further complicates the situation. With current imaging methods, significant limitations exist in the diagnosing of osteomyelitis and implant-related infections. Positron emission tomography (PET) with a glucose analogue, 18F-fluoro¬deoxyglucose (18F-FDG), seems to facilitate a more accurate diagnosis of chronic osteomyelitis. The method is based on the increased glucose consumption of activated inflammatory cells. Unfortunately, 18F-FDG accumulates also in sterile inflammation regions and causes false-positive findings, for exam¬ple, due to post-operative healing processes. Therefore, there is a clinical need for new, more infection-specific tracers. In addition, it is still unknown why 18F-FDG PET imaging is less accurate in the detec¬tion of periprosthetic joint infections, most frequently due to Staphylococcus epidermidis. This doctoral thesis focused on testing novel PET tracers (68Ga-chloride and 68Ga-DOTAVAP-P1) for early detections of bone infections and evaluated the role of pathogen-related factors in the appli¬cations of 18F-FDG PET in the diagnostics of bone infections. For preclinical models of S. epidermidis and S. aureus bone/implant infections, the significance of the causative pathogen was studied with respect to 18F-FDG uptake. In a retrospective analysis of patients with confirmed bone infections, the significance of the presence or absence of positive bacterial cultures on 18F-FDG uptake was evalu¬ated. 18F-FDG and 68Ga-chloride resulted in a similar uptake in S. aureus osteomyelitic bones. However, 68Ga-chloride did not show uptake in healing bones, and therefore it may be a more-specific tracer in the early post-operative or post-traumatic phase. 68Ga-DOTAVAP-P1, a novel synthetic peptide bind¬ing to vascular adhesion protein 1 (VAP-1), was able to detect the phase of inflammation in healing bones, but the uptake of the tracer was elevated also in osteomyelitis. Low-grade peri-implant infec¬tions due to S. epidermidis were characterized by a low uptake of 18F-FDG, which reflects the virulence of the causative pathogen and the degree of leukocyte infiltration. In the clinical study, no relationship was found between the level of 18F-FDG uptake and the presence of positive or negative bacterial cul¬tures. Thus 18F-FDG PET may help to confirm metabolically active infection process in patients with culture-negative, histologically confirmed, low-grade osteomyelitis.